Suppr超能文献

炭疽毒素保护性抗原转位酶的二级结构偏好性

Secondary Structure Preferences of the Anthrax Toxin Protective Antigen Translocase.

作者信息

Das Debasis, Krantz Bryan A

机构信息

Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.

Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.

出版信息

J Mol Biol. 2017 Mar 10;429(5):753-762. doi: 10.1016/j.jmb.2017.01.015. Epub 2017 Jan 20.

Abstract

In order for many proteins to move across hydrophobic membrane bilayers, they must be unfolded and translocated by a membrane-embedded channel. These translocase channels interact with the substrate proteins they translocate via hydrophobic pore loops and cleft structures called clamps. The molecular basis for how clamps facilitate unfolding and translocation is poorly understood. Anthrax toxin is composed of three proteins, a translocase channel-forming subunit, called protective antigen (PA), and two substrate proteins, called lethal factor (LF) and edema factor. Oligomeric PA forms a large channel that contains three types of polypeptide clamp sites: an α clamp, a phenylalanine clamp, and a charge clamp. Currently, it is thought that these clamp sites operate allosterically and promote translocation via an allosteric helix compression mechanism. Here, we report on the substrate secondary structure dependence of the PA channel. Peptides derived from regions of LF with high α-helical content bound cooperatively, but those derived from β-sheet regions in LF did not, suggesting that an allosteric site preferentially recognizes α-helical structure over β-sheet structure. Peptides derived from helical sites in LF showed increasingly longer single-channel blockades as a function of peptide concentration, a result that was consistent with stronger clamping behavior and reduced backsliding. Moreover, peptides derived from helical regions of LF translocated more efficiently than peptides derived from β-sheet regions of LF. Overall, in support of the allosteric helix compression model, we find that the channel prefers α-helical sequences over β-sheet sequences.

摘要

为了使许多蛋白质能够穿过疏水的细胞膜双层,它们必须被展开并通过一个嵌入膜中的通道进行转运。这些转运酶通道通过疏水的孔环和称为夹子的裂隙结构与它们转运的底物蛋白相互作用。夹子如何促进蛋白质展开和转运的分子基础目前还知之甚少。炭疽毒素由三种蛋白质组成,一种是形成转运酶通道的亚基,称为保护性抗原(PA),另外两种是底物蛋白,称为致死因子(LF)和水肿因子。寡聚体PA形成一个大通道,其中包含三种类型的多肽夹子位点:一个α夹子、一个苯丙氨酸夹子和一个电荷夹子。目前认为,这些夹子位点通过变构作用发挥功能,并通过变构螺旋压缩机制促进转运。在此,我们报告了PA通道对底物二级结构的依赖性。来自LF中α螺旋含量高的区域的肽协同结合,但来自LF中β折叠区域的肽则不然,这表明变构位点优先识别α螺旋结构而非β折叠结构。来自LF螺旋位点的肽随着肽浓度的增加,单通道阻断时间越来越长,这一结果与更强的夹紧行为和减少的回滑现象一致。此外,来自LF螺旋区域的肽比来自LFβ折叠区域的肽转运效率更高。总体而言,为支持变构螺旋压缩模型,我们发现该通道更喜欢α螺旋序列而非β折叠序列。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验