Éltes Tímea, Kirizs Tekla, Nusser Zoltan, Holderith Noemi
Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary, and.
János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary.
J Neurosci. 2017 Feb 15;37(7):1910-1924. doi: 10.1523/JNEUROSCI.2024-16.2017. Epub 2017 Jan 23.
Target cell type-dependent differences in presynaptic release probability ( ) and short-term plasticity are intriguing features of cortical microcircuits that increase the computational power of neuronal networks. Here, we tested the hypothesis that different voltage-gated Ca channel densities in presynaptic active zones (AZs) underlie different values. Two-photon Ca imaging, triple immunofluorescent labeling, and 3D electron microscopic (EM) reconstruction of rat CA3 pyramidal cell axon terminals revealed ∼1.7-1.9 times higher Ca inflow per AZ area in high boutons synapsing onto parvalbumin-positive interneurons (INs) than in low boutons synapsing onto mGluR1α-positive INs. EM replica immunogold labeling, however, demonstrated only 1.15 times larger Cav2.1 and Cav2.2 subunit densities in high AZs. Our results indicate target cell type-specific modulation of voltage-gated Ca channel function or different subunit composition as possible mechanisms underlying the functional differences. In addition, high synapses are also characterized by a higher density of docked vesicles, suggesting that a concerted action of these mechanisms underlies the functional differences. Target cell type-dependent variability in presynaptic properties is an intriguing feature of cortical synapses. When a single cortical pyramidal cell establishes a synapse onto a somatostatin-expressing interneuron (IN), the synapse releases glutamate with low probability, whereas the next bouton of the same axon has high release probability when its postsynaptic target is a parvalbumin-expressing IN. Here, we used combined molecular, imaging, and anatomical approaches to investigate the mechanisms underlying these differences. Our functional experiments implied an approximately twofold larger Ca channel density in high release probability boutons, whereas freeze-fracture immunolocalization demonstrated only a 15% difference in Ca channel subunit densities. Our results point toward a postsynaptic target cell type-dependent regulation of Ca channel function or different subunit composition as the underlying mechanism.
突触前释放概率()和短期可塑性中依赖于靶细胞类型的差异是皮质微回路的有趣特征,这些特征增加了神经网络的计算能力。在这里,我们测试了一个假设,即突触前活动区(AZs)中不同的电压门控钙通道密度是不同值的基础。对大鼠CA3锥体细胞轴突终末进行双光子钙成像、三重免疫荧光标记和三维电子显微镜(EM)重建发现,与突触到mGluR1α阳性中间神经元(INs)的低释放概率终扣相比,突触到小白蛋白阳性中间神经元(INs)的高释放概率终扣中,每个AZ区域的钙内流高约1.7 - 1.9倍。然而,EM复制品免疫金标记显示,高释放概率AZs中Cav2.1和Cav2.2亚基密度仅高1.15倍。我们的结果表明,电压门控钙通道功能的靶细胞类型特异性调节或不同的亚基组成是功能差异的潜在机制。此外,高释放概率突触还具有较高的停靠囊泡密度,这表明这些机制的协同作用是功能差异的基础。突触前特性中依赖于靶细胞类型的变异性是皮质突触的一个有趣特征。当单个皮质锥体细胞与表达生长抑素的中间神经元(IN)建立突触时,该突触以低概率释放谷氨酸,而当同一轴突的下一个终扣的突触后靶标是表达小白蛋白的IN时,其释放概率很高。在这里,我们使用分子、成像和解剖学相结合的方法来研究这些差异背后的机制。我们的功能实验表明,高释放概率终扣中的钙通道密度大约大两倍,而冷冻断裂免疫定位显示钙通道亚基密度仅相差15%。我们的结果表明,钙通道功能的突触后靶细胞类型依赖性调节或不同的亚基组成是潜在机制。