Suppr超能文献

机械和物理模型中自共振的控制

Control of autoresonance in mechanical and physical models.

作者信息

Kovaleva A

机构信息

Space Research Institute, Russian Academy of Sciences, Moscow 117997, Russia

出版信息

Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0213.

Abstract

Autoresonant energy transfer has been considered as one of the most effective methods of excitation and control of high-energy oscillations for a broad range of physical and engineering systems. Nonlinear time-invariant feedback control provides effective self-tuning and self-adaptation mechanisms targeted at preserving resonance oscillations under variations of the system parameters but its implementation may become extremely complicated. A large class of systems can avoid nonlinear feedback, still producing the required state due to time-variant feed-forward frequency control. This type of control in oscillator arrays employs an intrinsic property of a nonlinear oscillator to vary both its amplitude and the frequency when the driving frequency changes. This paper presents a survey of recently published and new results studying possibilities and limitations of time-variant frequency control in nonlinear oscillator arrays.This article is part of the themed issue 'Horizons of cybernetical physics'.

摘要

自共振能量转移被认为是激发和控制广泛物理和工程系统中高能振荡的最有效方法之一。非线性时不变反馈控制提供了有效的自调谐和自适应机制,旨在在系统参数变化时保持共振振荡,但其实现可能变得极其复杂。一大类系统可以避免非线性反馈,由于时变前馈频率控制仍能产生所需状态。振荡器阵列中的这种控制类型利用非线性振荡器的固有特性,当驱动频率变化时改变其幅度和频率。本文综述了最近发表的以及新的研究结果,这些结果研究了非线性振荡器阵列中时变频率控制的可能性和局限性。本文是主题为“控制论物理学的视野”特刊的一部分。

相似文献

1
Control of autoresonance in mechanical and physical models.机械和物理模型中自共振的控制
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0213.
2
Limiting phase trajectories and emergence of autoresonance in nonlinear oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):024901. doi: 10.1103/PhysRevE.88.024901. Epub 2013 Aug 5.
3
Driven, autoresonant three-oscillator interactions.驱动的自共振三振子相互作用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 2):026205. doi: 10.1103/PhysRevE.76.026205. Epub 2007 Aug 7.
4
Nonlinear dynamics as an engine of computation.作为计算引擎的非线性动力学。
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0222.
6
Second harmonic autoresonant control of the l=1 diocotron mode in pure-electron plasmas.纯电子等离子体中l = 1 diocotron模的二次谐波自共振控制。
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Sep;62(3 Pt B):4131-6. doi: 10.1103/physreve.62.4131.
7
Horizons of cybernetical physics.控制论物理学的视野
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0223.
8
Control methods for localization of nonlinear waves.非线性波的定位控制方法。
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0212.
9
Finding limiting possibilities of thermodynamic systems by optimization.通过优化寻找热力学系统的极限可能性。
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0219.
10
Parametric autoresonance.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):036619. doi: 10.1103/PhysRevE.64.036619. Epub 2001 Aug 30.

引用本文的文献

1
Horizons of cybernetical physics.控制论物理学的视野
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0223.

本文引用的文献

1
Capture into resonance of coupled Duffing oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022909. doi: 10.1103/PhysRevE.92.022909. Epub 2015 Aug 18.
2
Limiting phase trajectories and emergence of autoresonance in nonlinear oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):024901. doi: 10.1103/PhysRevE.88.024901. Epub 2013 Aug 5.
3
Autoresonant excitation of antiproton plasmas.反质子等离子体的自共振激发。
Phys Rev Lett. 2011 Jan 14;106(2):025002. doi: 10.1103/PhysRevLett.106.025002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验