Lee Sheng-An, Huang Kuo-Chuan
Department of Information Management, Kainan University, Taoyuan, Taiwan.
Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
BMC Med Genomics. 2016 Dec 5;9(Suppl 3):68. doi: 10.1186/s12920-016-0229-y.
Epigenetics of schizophrenia provides important information on how the environmental factors affect the genetic architecture of the disease. DNA methylation plays a pivotal role in etiology for schizophrenia. Previous studies have focused mostly on the discovery of schizophrenia-associated SNPs or genetic variants. As postmortem brain samples became available, more and more recent studies surveyed transcriptomics of the diseases. In this study, we constructed protein-protein interaction (PPI) network using the disease associated SNP (or genetic variants), differentially expressed disease genes and differentially methylated disease genes (or promoters). By combining the different datasets and topological analyses of the PPI network, we established a more comprehensive understanding of the development and genetics of this devastating mental illness.
We analyzed the previously published DNA methylation profiles of prefrontal cortex from 335 healthy controls and 191 schizophrenic patients. These datasets revealed 2014 CpGs identified as GWAS risk loci with the differential methylation profile in schizophrenia, and 1689 schizophrenic differential methylated genes (SDMGs) identified with predominant hypomethylation. These SDMGs, combined with the PPIs of these genes, were constructed into the schizophrenic differential methylation network (SDMN). On the SDMN, there are 10 hypermethylated SDMGs, including GNA13, CAPNS1, GABPB2, GIT2, LEFTY1, NDUFA10, MIOS, MPHOSPH6, PRDM14 and RFWD2. The hypermethylation to differential expression network (HyDEN) were constructed to determine how the hypermethylated promoters regulate gene expression. The enrichment analyses of biochemical pathways in HyDEN, including TNF alpha, PDGFR-beta signaling, TGF beta Receptor, VEGFR1 and VEGFR2 signaling, regulation of telomerase, hepatocyte growth factor receptor signaling, ErbB1 downstream signaling and mTOR signaling pathway, suggested that the malfunctioning of these pathways contribute to the symptoms of schizophrenia.
The epigenetic profiles of DNA differential methylation from schizophrenic brain samples were investigated to understand the regulatory roles of SDMGs. The SDMGs interplays with SCZCGs in a coordinated fashion in the disease mechanism of schizophrenia. The protein complexes and pathways involved in SDMN may be responsible for the etiology and potential treatment targets. The SDMG promoters are predominantly hypomethylated. Increasing methylation on these promoters is proposed as a novel therapeutic approach for schizophrenia.
精神分裂症的表观遗传学为环境因素如何影响该疾病的遗传结构提供了重要信息。DNA甲基化在精神分裂症的病因学中起着关键作用。以往的研究主要集中在发现与精神分裂症相关的单核苷酸多态性(SNP)或基因变异。随着死后大脑样本的可得性增加,越来越多的近期研究对该疾病的转录组学进行了调查。在本研究中,我们使用与疾病相关的SNP(或基因变异)、差异表达的疾病基因和差异甲基化的疾病基因(或启动子)构建了蛋白质-蛋白质相互作用(PPI)网络。通过结合不同的数据集和对PPI网络的拓扑分析,我们对这种毁灭性精神疾病的发展和遗传学有了更全面的理解。
我们分析了先前发表的来自335名健康对照和191名精神分裂症患者的前额叶皮质DNA甲基化谱。这些数据集揭示了2014个被鉴定为全基因组关联研究(GWAS)风险位点的CpG,其在精神分裂症中具有差异甲基化谱,以及1689个主要表现为低甲基化的精神分裂症差异甲基化基因(SDMG)。这些SDMG与这些基因的PPI相结合,构建成精神分裂症差异甲基化网络(SDMN)。在SDMN上,有10个高甲基化的SDMG,包括GNA13、CAPNS1、GABPB2、GIT2、LEFTY1、NDUFA10、MIOS、MPHOSPH6、PRDM14和RFWD2。构建了高甲基化与差异表达网络(HyDEN)以确定高甲基化启动子如何调节基因表达。HyDEN中生化途径的富集分析,包括肿瘤坏死因子α、血小板衍生生长因子受体β信号通路、转化生长因子β受体、血管内皮生长因子受体1和血管内皮生长因子受体2信号通路、端粒酶调节、肝细胞生长因子受体信号通路、表皮生长因子受体1下游信号通路和雷帕霉素靶蛋白(mTOR)信号通路,表明这些途径的功能失调导致了精神分裂症的症状。
研究了精神分裂症大脑样本中DNA差异甲基化的表观遗传谱,以了解SDMG的调节作用。在精神分裂症的疾病机制中,SDMG与精神分裂症相关候选基因(SCZCG)以协调的方式相互作用。SDMN中涉及的蛋白质复合物和途径可能是病因和潜在的治疗靶点。SDMG启动子主要表现为低甲基化。提议增加这些启动子上的甲基化作为精神分裂症的一种新的治疗方法。