Suppr超能文献

通过构建无机-有机复合保护层来提高钠金属电极的循环稳定性。

Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer.

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

Department of Chemical and Biological Engineering, Hanbat National University , Yuseong-gu, Daejeon 34158, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2017 Feb 22;9(7):6000-6006. doi: 10.1021/acsami.6b14437. Epub 2017 Feb 9.

Abstract

Owing to the natural abundance of sodium resources and their low price, next-generation batteries employing an Na metal anode, such as Na-O and Na-S systems, have attracted a great deal of interest. However, the poor reversibility of an Na metal electrode during repeated electrochemical plating and stripping is a major obstacle to realizing rechargeable sodium metal batteries. It mainly originates from Na dendrite formation and exhaustive electrolyte decomposition due to the high reactivity of Na metal. Herein, we report a free-standing composite protective layer (FCPL) for enhancing the reversibility of an Na metal electrode by mechanically suppressing Na dendritic growth and mitigating the electrolyte decomposition. A systematic variation of the liquid electrolyte uptake of FCPL verifies the existence of a critical shear modulus for suppressing Na dendrite growth, being in good agreement with a linear elastic theory, and emphasizes the importance of the ionic conductivity of FCPL for attaining uniform Na plating and stripping. The Na-Na symmetric cell with an optimized FCPL exhibits a cycle life two times longer than that of a bare Na electrode.

摘要

由于钠资源的丰富性和价格低廉,采用钠金属阳极的下一代电池,如 Na-O 和 Na-S 系统,引起了极大的兴趣。然而,由于钠金属的高反应性,Na 金属电极在反复电化学电镀和剥离过程中的可逆性差是实现可充电钠金属电池的主要障碍。主要源于 Na 枝晶的形成和电解质的耗尽分解。在此,我们报告了一种独立式复合保护层 (FCPL),通过机械抑制 Na 枝晶生长和减轻电解质分解来提高 Na 金属电极的可逆性。FCPL 的液体电解质吸收的系统变化验证了抑制 Na 枝晶生长的临界剪切模量的存在,与线性弹性理论吻合较好,并强调了 FCPL 的离子电导率对于实现均匀的 Na 电镀和剥离的重要性。具有优化 FCPL 的 Na-Na 对称电池的循环寿命是裸 Na 电极的两倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验