Dalgaard Louise Torp, Eliasson Lena
Department of Science and Environment, Roskilde University, Roskilde, Denmark.
Lund University Diabetes Center, Department of Clinical Sciences Malmö, CRC, SUS, Malmö, Sweden.
Int J Biochem Cell Biol. 2017 Jul;88:208-219. doi: 10.1016/j.biocel.2017.01.009. Epub 2017 Jan 22.
MicroRNAs (miRNAs) are cellular, short, non-coding ribonucleotides acting as endogenous posttranscriptional repressors following incorporation in the RNA-induced silencing complex. Despite being chemically and mechanistically very similar, miRNAs exert a multitude of different cellular effects by acting on mRNA species, whose gene-products partake in a wide array of processes. Here, the aim was to review the knowledge of miRNA expression and action in the islet of Langerhans. We have focused on: 1) physiological consequences of islet or beta cell specific inhibition of miRNA processing, 2) mechanisms regulating processing of miRNAs in islet cells, 3) presence and function of miRNAs in alpha versus beta cells - the two main cell types of islets, and 4) miRNA mediators of beta cell decompensation. It is clear that miRNAs regulate pancreatic islet development, maturation, and function in vivo. Moreover, processing of miRNAs appears to be altered by obesity, diabetes, and aging. A number of miRNAs (such as miR-7, miR-21, miR-29, miR-34a, miR-212/miR-132, miR-184, miR-200 and miR-375) are involved in mediating beta cell dysfunction and/or compensation induced by hyperglycemia, oxidative stress, cytotoxic cytokines, and in rodent models of fetal metabolic programming prediabetes and overt diabetes. Studies of human type 2 diabetic islets underline that these miRNA families could have important roles also in human type 2 diabetes. Furthermore, there is a genuine gap of knowledge regarding miRNA expression and function in pancreatic alpha cells. Progress in this area would be enhanced by improved in vitro alpha cell models and better tools for islet cell sorting.
微小RNA(miRNA)是细胞内的短链非编码核糖核苷酸,在整合到RNA诱导沉默复合体后作为内源性转录后抑制因子发挥作用。尽管miRNA在化学和机制上非常相似,但它们通过作用于mRNA种类发挥多种不同的细胞效应,而这些mRNA的基因产物参与了广泛的细胞过程。在此,我们旨在综述有关miRNA在胰岛中表达及作用的知识。我们重点关注了以下几个方面:1)胰岛或β细胞特异性抑制miRNA加工的生理后果;2)调节胰岛细胞中miRNA加工的机制;3)miRNA在胰岛两种主要细胞类型——α细胞和β细胞中的存在及功能;4)β细胞失代偿的miRNA介导因子。显然,miRNA在体内调节胰腺胰岛的发育、成熟和功能。此外,肥胖、糖尿病和衰老似乎会改变miRNA的加工过程。许多miRNA(如miR-7、miR-21、miR-29、miR-34a、miR-212/miR-132、miR-184、miR-200和miR-375)参与介导高血糖、氧化应激、细胞毒性细胞因子诱导的β细胞功能障碍和/或代偿,以及在胎儿代谢编程前期糖尿病和显性糖尿病的啮齿动物模型中发挥作用。对人类2型糖尿病胰岛的研究强调,这些miRNA家族在人类2型糖尿病中可能也起着重要作用。此外,关于胰腺α细胞中miRNA表达和功能的知识存在真正的空白。改进的体外α细胞模型和更好的胰岛细胞分选工具将有助于推动该领域的进展。