Ruan Hongyu, Yao Wei-Dong
Division of Neurosciences, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772.
Division of Neurosciences, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772
J Neurosci. 2017 Jan 25;37(4):986-997. doi: 10.1523/JNEUROSCI.2257-16.2016.
Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction.
It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to relapse. We found that repeated cocaine exposure alters a Hebbian associative synaptic learning rule that governs activity-dependent synaptic plasticity in the mouse prefrontal cortex, characterized by a broader temporal window and a lower threshold for spike-timing-dependent LTP (t-LTP), a cellular form of learning and memory. This rule change is caused by cocaine-exacerbated D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons that in turn pathologically recruits l-type Ca channels to facilitate coincidence detection during t-LTP induction. Our study provides novel insights on how cocaine, even with only brief exposure, may prime neural circuits for subsequent experience-dependent remodeling that may underlie certain addictive behavior.
成瘾性药物篡夺了通常用于奖励相关学习和记忆的神经可塑性机制,主要是通过引起中脑皮质边缘多巴胺回路中谷氨酸能突触强度的变化。在这里,我们表明,在体内反复给予可卡因,在戒断早期不会改变小鼠前额叶皮层的突触强度,而是通过拓宽时间窗口来修改赫布定量突触学习规则,并降低依赖于峰电位时间的长时程增强(t-LTP)的诱导阈值。在每日重复(而非单次)注射可卡因后,V层锥体神经元中的t-LTP在+30毫秒时被诱导,这对于生理盐水处理的小鼠来说是一个通常无效的t-LTP诱导时间间隔。这种由可卡因诱导的延长时间的t-LTP在停止给予可卡因后持续约1周,并伴随着对较少的前后峰电位对增强作用的敏感性增加,表明t-LTP诱导阈值降低。可卡因暴露后,基础突触强度和可达到的最大t-LTP幅度保持不变。我们进一步表明,可卡因对t-LTP诱导的促进作用是由锥体神经元中敏化的D1-环磷酸腺苷/蛋白激酶A多巴胺信号传导引起的,该信号随后病理性地募集电压门控L型钙通道,这些通道与含GluN2A的NMDA受体协同作用,在延长的时间驱动t-LTP。我们的结果说明了一种机制,即可卡因作用于关键的神经调节途径,在赫布可塑性过程中修改重合检测窗口,以促进前额叶兴奋性回路中的联合突触增强。通过修改控制活动依赖性突触可塑性的规则,成瘾性药物可以破坏对奖励和成瘾的执行控制至关重要的经验驱动的神经回路重塑过程。
人们认为成瘾性药物常常使成瘾者的大脑奖励系统变得高度敏感,使个体更容易复发。我们发现,反复给予可卡因会改变一种赫布联合突触学习规则,该规则控制小鼠前额叶皮层中活动依赖性突触可塑性,其特征是时间窗口更宽,依赖于峰电位时间的长时程增强(t-LTP,一种学习和记忆的细胞形式)的阈值更低。这种规则变化是由可卡因加剧的锥体神经元中D1-环磷酸腺苷/蛋白激酶A多巴胺信号传导引起的,这反过来又病理性地募集L型钙通道,以促进t-LTP诱导期间的重合检测。我们的研究为可卡因如何即使仅短暂暴露也可能使神经回路为随后的经验依赖性重塑做好准备提供了新的见解,这种重塑可能是某些成瘾行为的基础。