Suppr超能文献

早期视觉皮层中的非线性Y型感受野:从皮层下Y细胞构建线索不变感受野的中间阶段。

Nonlinear Y-Like Receptive Fields in the Early Visual Cortex: An Intermediate Stage for Building Cue-Invariant Receptive Fields from Subcortical Y Cells.

作者信息

Gharat Amol, Baker Curtis L

机构信息

McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montreal, Quebec H3G 1A4, Canada.

McGill Vision Research Unit, Department of Ophthalmology, McGill University, Montreal, Quebec H3G 1A4, Canada

出版信息

J Neurosci. 2017 Jan 25;37(4):998-1013. doi: 10.1523/JNEUROSCI.2120-16.2016.

Abstract

UNLABELLED

Many of the neurons in early visual cortex are selective for the orientation of boundaries defined by first-order cues (luminance) as well as second-order cues (contrast, texture). The neural circuit mechanism underlying this selectivity is still unclear, but some studies have proposed that it emerges from spatial nonlinearities of subcortical Y cells. To understand how inputs from the Y-cell pathway might be pooled to generate cue-invariant receptive fields, we recorded visual responses from single neurons in cat Area 18 using linear multielectrode arrays. We measured responses to drifting and contrast-reversing luminance gratings as well as contrast modulation gratings. We found that a large fraction of these neurons have nonoriented responses to gratings, similar to those of subcortical Y cells: they respond at the second harmonic (F2) to high-spatial frequency contrast-reversing gratings and at the first harmonic (F1) to low-spatial frequency drifting gratings ("Y-cell signature"). For a given neuron, spatial frequency tuning for linear (F1) and nonlinear (F2) responses is quite distinct, similar to orientation-selective cue-invariant neurons. Also, these neurons respond to contrast modulation gratings with selectivity for the carrier (texture) spatial frequency and, in some cases, orientation. Their receptive field properties suggest that they could serve as building blocks for orientation-selective cue-invariant neurons. We propose a circuit model that combines ON- and OFF-center cortical Y-like cells in an unbalanced push-pull manner to generate orientation-selective, cue-invariant receptive fields.

SIGNIFICANCE STATEMENT

A significant fraction of neurons in early visual cortex have specialized receptive fields that allow them to selectively respond to the orientation of boundaries that are invariant to the cue (luminance, contrast, texture, motion) that defines them. However, the neural mechanism to construct such versatile receptive fields remains unclear. Using multielectrode recording, we found a large fraction of neurons in early visual cortex with receptive fields not selective for orientation that have spatial nonlinearities like those of subcortical Y cells. These are strong candidates for building cue-invariant orientation-selective neurons; we present a neural circuit model that pools such neurons in an imbalanced "push-pull" manner, to generate orientation-selective cue-invariant receptive fields.

摘要

未标注

早期视觉皮层中的许多神经元对由一阶线索(亮度)以及二阶线索(对比度、纹理)定义的边界方向具有选择性。这种选择性背后的神经回路机制仍不清楚,但一些研究提出它源自皮层下Y细胞的空间非线性。为了理解Y细胞通路的输入如何汇聚以产生线索不变的感受野,我们使用线性多电极阵列记录了猫18区单个神经元的视觉反应。我们测量了对漂移和对比度反转亮度光栅以及对比度调制光栅的反应。我们发现这些神经元中的很大一部分对光栅具有非定向反应,类似于皮层下Y细胞:它们对高空间频率对比度反转光栅以二次谐波(F2)做出反应,对低空间频率漂移光栅以基波(F1)做出反应(“Y细胞特征”)。对于给定的神经元,线性(F1)和非线性(F2)反应的空间频率调谐非常不同,类似于方向选择性线索不变神经元。此外,这些神经元对对比度调制光栅的反应具有对载波(纹理)空间频率以及在某些情况下对方向的选择性。它们的感受野特性表明它们可以作为方向选择性线索不变神经元的构建模块。我们提出了一个电路模型,该模型以不平衡的推挽方式组合开中心和闭中心的皮层样Y细胞,以产生方向选择性、线索不变的感受野。

意义声明

早期视觉皮层中的很大一部分神经元具有专门的感受野,使它们能够选择性地响应边界的方向,而这些边界对于定义它们的线索(亮度、对比度、纹理、运动)是不变的。然而,构建这种多功能感受野的神经机制仍不清楚。使用多电极记录,我们在早期视觉皮层中发现了很大一部分神经元,其感受野对方向没有选择性,具有类似于皮层下Y细胞的空间非线性。这些是构建线索不变的方向选择性神经元的有力候选者;我们提出了一个神经电路模型,该模型以不平衡的“推挽”方式汇聚这些神经元,以产生方向选择性线索不变的感受野。

相似文献

2
Motion-defined contour processing in the early visual cortex.
J Neurophysiol. 2012 Sep;108(5):1228-43. doi: 10.1152/jn.00840.2011. Epub 2012 Jun 6.
3
Neural mechanisms mediating responses to abutting gratings: luminance edges vs. illusory contours.
Vis Neurosci. 2006 Mar-Apr;23(2):181-99. doi: 10.1017/S0952523806232036.
4
Neural Processing of Second-Order Motion in the Suprasylvian Cortex of the Cat.
Cereb Cortex. 2017 Feb 1;27(2):1347-1357. doi: 10.1093/cercor/bhv320.
5
Boundary cue invariance in cortical orientation maps.
Cereb Cortex. 2006 Jun;16(6):896-906. doi: 10.1093/cercor/bhj033. Epub 2005 Sep 8.
6
Organization of suppression in receptive fields of neurons in cat visual cortex.
J Neurophysiol. 1992 Jul;68(1):144-63. doi: 10.1152/jn.1992.68.1.144.
7
Phase-Dependent Interactions in Visual Cortex to Combinations of First- and Second-Order Stimuli.
J Neurosci. 2016 Dec 7;36(49):12328-12337. doi: 10.1523/JNEUROSCI.1350-16.2016.
9
Form-cue invariant second-order neuronal responses to contrast modulation in primate area V2.
J Neurosci. 2014 Sep 3;34(36):12081-92. doi: 10.1523/JNEUROSCI.0211-14.2014.
10
Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure.
J Neurophysiol. 1998 Dec;80(6):2991-3004. doi: 10.1152/jn.1998.80.6.2991.

引用本文的文献

1
Feature selectivity and invariance in marsupial primary visual cortex.
J Physiol. 2025 Jan;603(2):423-445. doi: 10.1113/JP285757. Epub 2024 Dec 3.
2
Characterization of extracellular spike waveforms recorded in wallaby primary visual cortex.
Front Neurosci. 2023 Sep 8;17:1244952. doi: 10.3389/fnins.2023.1244952. eCollection 2023.
3
Beyond ℓ1 sparse coding in V1.
PLoS Comput Biol. 2023 Sep 12;19(9):e1011459. doi: 10.1371/journal.pcbi.1011459. eCollection 2023 Sep.
4
Behavioral signatures of Y-like neuronal responses in human vision.
Sci Rep. 2022 Nov 9;12(1):19116. doi: 10.1038/s41598-022-23293-8.
5
Orientation pinwheels in primary visual cortex of a highly visual marsupial.
Sci Adv. 2022 Sep 30;8(39):eabn0954. doi: 10.1126/sciadv.abn0954.
6
Model-based characterization of the selectivity of neurons in primary visual cortex.
J Neurophysiol. 2022 Aug 1;128(2):350-363. doi: 10.1152/jn.00416.2021. Epub 2022 Jun 29.
7
Segmenting surface boundaries using luminance cues.
Sci Rep. 2021 May 12;11(1):10074. doi: 10.1038/s41598-021-89277-2.
8
Modeling second-order boundary perception: A machine learning approach.
PLoS Comput Biol. 2019 Mar 18;15(3):e1006829. doi: 10.1371/journal.pcbi.1006829. eCollection 2019 Mar.
9
Do Primates and Deep Artificial Neural Networks Perform Object Categorization in a Similar Manner?
J Neurosci. 2019 Feb 6;39(6):946-948. doi: 10.1523/JNEUROSCI.2458-18.2018.

本文引用的文献

1
Phase-Dependent Interactions in Visual Cortex to Combinations of First- and Second-Order Stimuli.
J Neurosci. 2016 Dec 7;36(49):12328-12337. doi: 10.1523/JNEUROSCI.1350-16.2016.
2
Categorically distinct types of receptive fields in early visual cortex.
J Neurophysiol. 2016 May 1;115(5):2556-76. doi: 10.1152/jn.00659.2015. Epub 2016 Mar 2.
3
Orientation-cue invariant population responses to contrast-modulated and phase-reversed contour stimuli in macaque V1 and V2.
PLoS One. 2014 Sep 4;9(9):e106753. doi: 10.1371/journal.pone.0106753. eCollection 2014.
4
Form-cue invariant second-order neuronal responses to contrast modulation in primate area V2.
J Neurosci. 2014 Sep 3;34(36):12081-92. doi: 10.1523/JNEUROSCI.0211-14.2014.
5
Spike sorting for polytrodes: a divide and conquer approach.
Front Syst Neurosci. 2014 Feb 10;8:6. doi: 10.3389/fnsys.2014.00006. eCollection 2014.
6
The spatial structure of a nonlinear receptive field.
Nat Neurosci. 2012 Nov;15(11):1572-80. doi: 10.1038/nn.3225. Epub 2012 Sep 23.
7
Motion-defined contour processing in the early visual cortex.
J Neurophysiol. 2012 Sep;108(5):1228-43. doi: 10.1152/jn.00840.2011. Epub 2012 Jun 6.
8
Equivalent representation of real and illusory contours in macaque V4.
J Neurosci. 2012 May 16;32(20):6760-70. doi: 10.1523/JNEUROSCI.6140-11.2012.
9
Local diversity and fine-scale organization of receptive fields in mouse visual cortex.
J Neurosci. 2011 Dec 14;31(50):18506-21. doi: 10.1523/JNEUROSCI.2974-11.2011.
10
The Y cell visual pathway implements a demodulating nonlinearity.
Neuron. 2011 Jul 28;71(2):348-61. doi: 10.1016/j.neuron.2011.05.044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验