Suppr超能文献

氧化钛形态控制量子点太阳能电池中的电荷收集效率。

Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells.

作者信息

Kolay Ankita, Kumar P Naresh, Kumar Sarode Krishna, Deepa Melepurath

机构信息

Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Kandi-502285, Telangana, India.

出版信息

Phys Chem Chem Phys. 2017 Feb 8;19(6):4607-4617. doi: 10.1039/c6cp07364f.

Abstract

Charge transfer at the TiO/quantum dots (QDs) interface, charge collection at the TiO/QDs/current collector (FTO or SnO:F) interface, and back electron transfer at the TiO/QDs/S interface are processes controlled by the electron transport layer or TiO. These key processes control the power conversion efficiencies (PCEs) of quantum dot solar cells (QDSCs). Here, four TiO morphologies, porous nanoparticles (PNPs), nanowires (NWs), nanosheets (NSHs) and nanoparticles (NPs), were sensitized with CdS and the photovoltaic performances were compared. The marked differences in the cell parameters on going from one morphology to the other have been explained by correlating the shape, structure and the above-described interfacial properties of a given TiO morphology to the said parameters. The average magnitudes of PCEs follow the order: NWs (5.96%) > NPs (4.95%) > PNPs (4.85%) > NSHs (2.5%), with the champion cell based on NWs exhibiting a PCE of 6.29%. For NWs, an optimal balance between the fast photo-excited electron injection to NWs at the NW/CdS interface, the high resistance offered at the TiO NW/CdS/S interfaces to electron recombination with the oxidized electrolyte or with the holes in CdS, the low electron transport resistance in NWs, and low dark currents, yields the highest efficiency due to directional unhindered transport of electrons afforded by the NWs. For NSHs, electron trapping in the two dimensional sheets, and a high electron recombination rate prevent the effective transfer of electrons to FTO, thus reducing short circuit current density significantly, resulting in a poor performance. This study provides a deep understanding of charge transfer, transport and collection processes necessary for the design of efficient QDSCs.

摘要

TiO/量子点(QDs)界面处的电荷转移、TiO/QDs/集流体(FTO或SnO:F)界面处的电荷收集以及TiO/QDs/S界面处的背向电子转移,均为受电子传输层或TiO控制的过程。这些关键过程决定着量子点太阳能电池(QDSCs)的功率转换效率(PCEs)。在此,用硫化镉(CdS)敏化了四种TiO形态,即多孔纳米颗粒(PNPs)、纳米线(NWs)、纳米片(NSHs)和纳米颗粒(NPs),并比较了它们的光伏性能。通过将给定TiO形态的形状、结构及上述界面性质与所述参数相关联,解释了从一种形态转变为另一种形态时电池参数的显著差异。PCEs的平均大小顺序为:NWs(5.96%)> NPs(4.95%)> PNPs(4.85%)> NSHs(2.5%),基于NWs的最佳电池表现出6.29%的PCE。对于NWs,在NW/CdS界面处快速的光激发电子注入到NWs、TiO NW/CdS/S界面处对电子与氧化电解质或CdS中的空穴复合提供的高电阻、NWs中低的电子传输电阻以及低暗电流之间的最佳平衡,由于NWs提供的电子定向无阻碍传输而产生了最高效率。对于NSHs,二维片中的电子俘获以及高电子复合率阻碍了电子有效地转移到FTO,从而显著降低短路电流密度,导致性能不佳。本研究为高效QDSCs设计所需的电荷转移、传输和收集过程提供了深入理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验