Eaves Deborah J, Haque Tamanna, Tudor Richard L, Barron Yoshimi, Zampronio Cleidiane G, Cotton Nicholas P J, de Graaf Barend H J, White Scott A, Cooper Helen J, Franklin F Christopher H, Harper Jeffery F, Franklin-Tong Vernonica E
School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom (D.J.E., T.H., R.L.T., C.G.Z., N.P.J.C., B.H.J.d.e.G., S.A.W., H.J.C., F.C.H.F., V.E.F.-T.); and.
Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557 (Y.B., J.F.H.).
Plant Physiol. 2017 Mar;173(3):1606-1616. doi: 10.1104/pp.16.01450. Epub 2017 Jan 26.
Protein phosphorylation regulates numerous cellular processes. Identifying the substrates and protein kinases involved is vital to understand how these important posttranslational modifications modulate biological function in eukaryotic cells. Pyrophosphatases catalyze the hydrolysis of inorganic phosphate (PP) to inorganic phosphate P, driving biosynthetic reactions; they are essential for low cytosolic inorganic phosphate. It was suggested recently that posttranslational regulation of Family I soluble inorganic pyrophosphatases (sPPases) may affect their activity. We previously demonstrated that two pollen-expressed sPPases, Pr-p26.1a and Pr-p26.1b, from the flowering plant were inhibited by phosphorylation. Despite the potential significance, there is a paucity of data on sPPase phosphorylation and regulation. Here, we used liquid chromatographic tandem mass spectrometry to map phosphorylation sites to the otherwise divergent amino-terminal extensions on these pollen sPPases. Despite the absence of reports in the literature on mapping phosphorylation sites on sPPases, a database survey of various proteomes identified a number of examples, suggesting that phosphorylation may be a more widely used mechanism to regulate these enzymes. Phosphomimetic mutants of Pr-p26.1a/b significantly and differentially reduced PPase activities by up to 2.5-fold at pH 6.8 and 52% in the presence of Ca and hydrogen peroxide over unmodified proteins. This indicates that phosphoregulation of key sites can inhibit the catalytic responsiveness of these proteins in concert with key intracellular events. As sPPases are essential for many metabolic pathways in eukaryotic cells, our findings identify the phosphorylation of sPPases as a potential master regulatory mechanism that could be used to attenuate metabolism.
蛋白质磷酸化调节众多细胞过程。识别其中涉及的底物和蛋白激酶对于理解这些重要的翻译后修饰如何调节真核细胞中的生物学功能至关重要。焦磷酸酶催化无机焦磷酸(PP)水解为无机磷酸P,驱动生物合成反应;它们对于低细胞质无机磷酸至关重要。最近有人提出,I型可溶性无机焦磷酸酶(sPPases)的翻译后调节可能会影响其活性。我们之前证明,开花植物中的两种花粉表达的sPPases,即Pr-p26.1a和Pr-p26.1b,会受到磷酸化的抑制。尽管具有潜在意义,但关于sPPase磷酸化和调节的数据却很少。在这里,我们使用液相色谱串联质谱法将磷酸化位点定位到这些花粉sPPases上原本不同的氨基末端延伸区域。尽管文献中没有关于sPPases磷酸化位点定位的报道,但对各种蛋白质组的数据库调查发现了许多例子,这表明磷酸化可能是一种更广泛用于调节这些酶的机制。Pr-p26.1a/b的磷酸模拟突变体在pH 6.8时显著且不同程度地降低了PPase活性,在存在Ca和过氧化氢的情况下,与未修饰的蛋白质相比,活性降低了2.5倍,降低了52%。这表明关键位点的磷酸化调节可以与关键的细胞内事件协同抑制这些蛋白质的催化反应性。由于sPPases对真核细胞中的许多代谢途径至关重要,我们的研究结果确定sPPases的磷酸化是一种潜在的主要调节机制,可用于减弱新陈代谢。