Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio 49, 41092 Seville, Spain.
J Biol Chem. 2013 May 3;288(18):13082-92. doi: 10.1074/jbc.M112.439349. Epub 2013 Mar 11.
Inorganic pyrophosphatases are required for anabolism to take place in all living organisms. Defects in genes encoding these hydrolytic enzymes are considered inviable, although their exact nature has not been studied at the cellular and molecular physiology levels. Using a conditional mutant in IPP1, the Saccharomyces cerevisiae gene encoding the cytosolic soluble pyrophosphatase, we show that respiring cells arrest in S phase upon Ipp1p deficiency, but they remain viable and resume growth if accumulated pyrophosphate is removed. However, fermenting cells arrest in G1/G0 phase and suffer massive vacuolization and eventual cell death by autophagy. Impaired NAD(+) metabolism is a major determinant of cell death in this scenario because demise can be avoided under conditions favoring accumulation of the oxidized pyridine coenzyme. These results posit that the mechanisms related to excess pyrophosphate toxicity in eukaryotes are dependent on the energy metabolism of the cell.
无机焦磷酸酶是所有生物进行合成代谢所必需的。尽管这些水解酶的编码基因缺陷被认为是不可存活的,但它们在细胞和分子生理学水平上的具体性质尚未得到研究。我们使用编码细胞质可溶性焦磷酸酶的 Saccharomyces cerevisiae 基因 IPP1 的条件突变体,表明在 Ipp1p 缺乏时,呼吸细胞在 S 期停滞,但如果去除积累的焦磷酸盐,它们仍然存活并恢复生长。然而,发酵细胞在 G1/G0 期停滞,并通过自噬遭受大量液泡化和最终的细胞死亡。在这种情况下,受损的 NAD(+) 代谢是细胞死亡的一个主要决定因素,因为在有利于氧化吡啶辅酶积累的条件下,可以避免死亡。这些结果表明,真核生物中与过量焦磷酸盐毒性相关的机制依赖于细胞的能量代谢。