Suppr超能文献

B 细胞表位作图与计算机预测表位简介

An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction.

机构信息

Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia.

Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, 845 10 Bratislava, Slovakia.

出版信息

J Immunol Res. 2016;2016:6760830. doi: 10.1155/2016/6760830. Epub 2016 Dec 29.

Abstract

Identification of B-cell epitopes is a fundamental step for development of epitope-based vaccines, therapeutic antibodies, and diagnostic tools. Epitope-based antibodies are currently the most promising class of biopharmaceuticals. In the last decade, in-depth in silico analysis and categorization of the experimentally identified epitopes stimulated development of algorithms for epitope prediction. Recently, various in silico tools are employed in attempts to predict B-cell epitopes based on sequence and/or structural data. The main objective of epitope identification is to replace an antigen in the immunization, antibody production, and serodiagnosis. The accurate identification of B-cell epitopes still presents major challenges for immunologists. Advances in B-cell epitope mapping and computational prediction have yielded molecular insights into the process of biorecognition and formation of antigen-antibody complex, which may help to localize B-cell epitopes more precisely. In this paper, we have comprehensively reviewed state-of-the-art experimental methods for B-cell epitope identification, existing databases for epitopes, and novel in silico resources and prediction tools available online. We have also elaborated new trends in the antibody-based epitope prediction. The aim of this review is to assist researchers in identification of B-cell epitopes.

摘要

鉴定 B 细胞表位是基于表位疫苗、治疗性抗体和诊断工具开发的基本步骤。基于表位的抗体是目前最有前途的生物制药类。在过去的十年中,对实验鉴定的表位进行深入的计算分析和分类,刺激了基于算法的表位预测的发展。最近,各种基于计算的工具被用于尝试基于序列和/或结构数据预测 B 细胞表位。鉴定表位的主要目的是在免疫、抗体产生和血清诊断中替代抗原。准确鉴定 B 细胞表位仍然是免疫学家面临的主要挑战。B 细胞表位映射和计算预测的进展为生物识别过程和抗原-抗体复合物的形成提供了分子见解,这可能有助于更精确地定位 B 细胞表位。在本文中,我们全面回顾了用于鉴定 B 细胞表位的最先进的实验方法、现有的表位数据库以及在线提供的新型计算资源和预测工具。我们还详细介绍了基于抗体的表位预测的新趋势。本综述的目的是帮助研究人员鉴定 B 细胞表位。

相似文献

1
An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction.
J Immunol Res. 2016;2016:6760830. doi: 10.1155/2016/6760830. Epub 2016 Dec 29.
2
Pep-3D-Search: a method for B-cell epitope prediction based on mimotope analysis.
BMC Bioinformatics. 2008 Dec 16;9:538. doi: 10.1186/1471-2105-9-538.
3
In Silico Prediction of Linear B-Cell Epitopes on Proteins.
Methods Mol Biol. 2017;1484:255-264. doi: 10.1007/978-1-4939-6406-2_17.
4
In Silico Tools for Predicting Novel Epitopes.
Methods Mol Biol. 2024;2813:245-280. doi: 10.1007/978-1-0716-3890-3_17.
5
In silico models for B-cell epitope recognition and signaling.
Methods Mol Biol. 2013;993:129-38. doi: 10.1007/978-1-62703-342-8_9.
6
Prediction of linear B-cell epitopes.
Methods Mol Biol. 2009;524:335-44. doi: 10.1007/978-1-59745-450-6_24.
7
Advances in In-silico B-cell Epitope Prediction.
Curr Top Med Chem. 2019;19(2):105-115. doi: 10.2174/1568026619666181130111827.
8
An introduction to epitope prediction methods and software.
Rev Med Virol. 2009 Mar;19(2):77-96. doi: 10.1002/rmv.602.
9
B-cell epitope prediction through a graph model.
BMC Bioinformatics. 2012;13 Suppl 17(Suppl 17):S20. doi: 10.1186/1471-2105-13-S17-S20. Epub 2012 Dec 13.

引用本文的文献

1
VaccineDesigner: A Web-Based Tool for Streamlined Multi-Epitope Vaccine Design.
Biology (Basel). 2025 Aug 7;14(8):1019. doi: 10.3390/biology14081019.
2
3
Screening of novel therapeutic targets and chimeric vaccine construction against antibiotic-resistant .
Front Immunol. 2025 Jul 4;16:1555248. doi: 10.3389/fimmu.2025.1555248. eCollection 2025.
4
B-cell epitope prediction for developing allergy vaccines and their companion immunodiagnostics.
Front Immunol. 2025 Jul 2;16:1624339. doi: 10.3389/fimmu.2025.1624339. eCollection 2025.
5
Deep learning in next-generation vaccine development for infectious diseases.
Mol Ther Nucleic Acids. 2025 Jun 4;36(3):102586. doi: 10.1016/j.omtn.2025.102586. eCollection 2025 Sep 9.
10
Epitope-based antibody development against metalloproteinases and phospholipases A from venom.
J Venom Anim Toxins Incl Trop Dis. 2025 May 9;31:e20240060. doi: 10.1590/1678-9199-JVATITD-2024-0060. eCollection 2025.

本文引用的文献

1
Editorial overview: Preventive and therapeutic vaccines.
Curr Opin Virol. 2016 Apr;17:viii-x. doi: 10.1016/j.coviro.2016.05.006.
4
Predicting linear B-cell epitopes using amino acid anchoring pair composition.
BioData Min. 2015 Apr 29;8:14. doi: 10.1186/s13040-015-0047-3. eCollection 2015.
6
EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.
BMC Bioinformatics. 2014 Dec 19;15(1):414. doi: 10.1186/s12859-014-0414-y.
7
PEASE: predicting B-cell epitopes utilizing antibody sequence.
Bioinformatics. 2015 Apr 15;31(8):1313-5. doi: 10.1093/bioinformatics/btu790. Epub 2014 Nov 27.
8
Machine learning-based methods for prediction of linear B-cell epitopes.
Methods Mol Biol. 2014;1184:217-36. doi: 10.1007/978-1-4939-1115-8_12.
9
10
A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes.
Immunology. 2014 Sep;143(1):13-20. doi: 10.1111/imm.12323.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验