Strozzi D J, Bailey D S, Michel P, Divol L, Sepke S M, Kerbel G D, Thomas C A, Ralph J E, Moody J D, Schneider M B
Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
Phys Rev Lett. 2017 Jan 13;118(2):025002. doi: 10.1103/PhysRevLett.118.025002. Epub 2017 Jan 12.
The effects of laser-plasma interactions (LPI) on the dynamics of inertial confinement fusion hohlraums are investigated via a new approach that self-consistently couples reduced LPI models into radiation-hydrodynamics numerical codes. The interplay between hydrodynamics and LPI-specifically stimulated Raman scatter and crossed-beam energy transfer (CBET)-mostly occurs via momentum and energy deposition into Langmuir and ion acoustic waves. This spatially redistributes energy coupling to the target, which affects the background plasma conditions and thus, modifies laser propagation. This model shows reduced CBET and significant laser energy depletion by Langmuir waves, which reduce the discrepancy between modeling and data from hohlraum experiments on wall x-ray emission and capsule implosion shape.
通过一种新方法研究了激光 - 等离子体相互作用(LPI)对惯性约束聚变黑腔动力学的影响,该方法将简化的LPI模型自洽地耦合到辐射流体动力学数值代码中。流体动力学与LPI(特别是受激拉曼散射和交叉束能量转移(CBET))之间的相互作用主要通过向朗缪尔波和离子声波的动量和能量沉积发生。这在空间上重新分配了与靶的能量耦合,影响了背景等离子体条件,从而改变了激光传播。该模型显示出CBET的减少以及朗缪尔波导致的显著激光能量损耗,这减少了壁面X射线发射和胶囊内爆形状的黑腔实验建模与数据之间的差异。