Suppr超能文献

基于多分量高斯混合模型和耦合水平集的心脏磁共振延迟增强成像心肌分割

Myocardium Segmentation From DE MRI Using Multicomponent Gaussian Mixture Model and Coupled Level Set.

作者信息

Liu Jie, Zhuang Xiahai, Wu Lianming, An Dongaolei, Xu Jianrong, Peters Terry, Gu Lixu

机构信息

School of Biomedical EngineeringShanghai Jiao Tong University.

School of Data ScienceFudan University.

出版信息

IEEE Trans Biomed Eng. 2017 Nov;64(11):2650-2661. doi: 10.1109/TBME.2017.2657656.

Abstract

In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with similar intensities, while at the same time maintain spatial continuity, we introduce a coupled level set (CLS) to regularize the posterior probability. The CLS, as a spatial regularization, can be adapted to the image characteristics dynamically. We also introduce an image intensity gradient based term into the CLS, adding an extra force to the posterior probability based framework, to improve the accuracy of myocardium boundary delineation. The prebuilt atlases are propagated to the target image to initialize the framework. The proposed method was tested on datasets of 22 clinical cases, and achieved Dice similarity coefficients of 87.43 ± 5.62% (endocardium), 90.53 ± 3.20% (epicardium) and 73.58 ± 5.58% (myocardium), which have outperformed three variants of the classic segmentation methods. The results can provide a benchmark for the myocardial segmentation in the literature. DE MRI provides an important tool to assess the viability of myocardium. The accurate segmentation of myocardium, which is a prerequisite for further quantitative analysis of myocardial infarction (MI) region, can provide important support for the diagnosis and treatment management for MI patients. In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with similar intensities, while at the same time maintain spatial continuity, we introduce a coupled level set (CLS) to regularize the posterior probability. The CLS, as a spatial regularization, can be adapted to the image characteristics dynamically. We also introduce an image intensity gradient based term into the CLS, adding an extra force to the posterior probability based framework, to improve the accuracy of myocardium boundary delineation. The prebuilt atlases are propagated to the target image to initialize the framework. The proposed method was tested on datasets of 22 clinical cases, and achieved Dice similarity coefficients of 87.43 ± 5.62% (endocardium), 90.53 ± 3.20% (epicardium) and 73.58 ± 5.58% (myocardium), which have outperformed three variants of the classic segmentation methods. The results can provide a benchmark for the myocardial segmentation in the literature. DE MRI provides an important tool to assess the viability of myocardium. The accurate segmentation of myocardium, which is a prerequisite for further quantitative analysis of myocardial infarction (MI) region, can provide important support for the diagnosis and treatment management for MI patients.

摘要

在本文中,我们提出了一种用于延迟增强(DE)MRI图像心肌分割的全自动框架,该框架不依赖于患者特定的先验信息。我们采用多分量高斯混合模型来处理由梗死引起的心肌强度异质性。为了将心肌与具有相似强度的其他组织区分开来,同时保持空间连续性,我们引入了耦合水平集(CLS)来正则化后验概率。CLS作为一种空间正则化方法,可以动态地适应图像特征。我们还将基于图像强度梯度的项引入到CLS中,为基于后验概率的框架添加额外的力,以提高心肌边界描绘的准确性。预构建的图谱被传播到目标图像以初始化该框架。所提出的方法在22个临床病例的数据集上进行了测试,心内膜的Dice相似系数达到87.43±5.62%,心包膜的为90.53±3.20%,心肌的为73.58±5.58%,这些结果优于经典分割方法的三个变体。这些结果可为文献中的心肌分割提供一个基准。DE MRI提供了一种评估心肌活力的重要工具。心肌的准确分割是进一步定量分析心肌梗死(MI)区域的前提条件,可为MI患者的诊断和治疗管理提供重要支持。在本文中,我们提出了一种用于延迟增强(DE)MRI图像心肌分割的全自动框架,该框架不依赖于患者特定的先验信息。我们采用多分量高斯混合模型来处理由梗死引起的心肌强度异质性。为了将心肌与具有相似强度的其他组织区分开来,同时保持空间连续性,我们引入了耦合水平集(CLS)来正则化后验概率。CLS作为一种空间正则化方法,可以动态地适应图像特征。我们还将基于图像强度梯度的项引入到CLS中,为基于后验概率的框架添加额外的力,以提高心肌边界描绘的准确性。预构建的图谱被传播到目标图像以初始化该框架。所提出的方法在22个临床病例的数据集上进行了测试,心内膜的Dice相似系数达到87.43±5.62%,心包膜的为90.53±3.20%,心肌的为73.58±5.58%,这些结果优于经典分割方法的三个变体。这些结果可为文献中的心肌分割提供一个基准。DE MRI提供了一种评估心肌活力的重要工具。心肌 的准确分割是进一步定量分析心肌梗死(MI)区域的前提条件,可为MI患者的诊断和治疗管理提供重要支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验