Suppr超能文献

开发选择性DYRK1A抑制剂的多步虚拟筛选

Multi-step virtual screening to develop selective DYRK1A inhibitors.

作者信息

Koyama Tomoko, Yamaotsu Noriyuki, Nakagome Izumi, Ozawa Shin-Ichiro, Yoshida Tomoki, Hayakawa Daichi, Hirono Shuichi

机构信息

School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.

School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.

出版信息

J Mol Graph Model. 2017 Mar;72:229-239. doi: 10.1016/j.jmgm.2017.01.014. Epub 2017 Jan 15.

Abstract

Developing selective inhibitors for a particular kinase remains a major challenge in kinase-targeted drug discovery. Here we performed a multi-step virtual screening for dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) inhibitors by focusing on the selectivity for DYRK1A over cyclin-dependent kinase 5 (CDK5). To examine the key factors contributing to the selectivity, we constructed logistic regression models to discriminate between actives and inactives for DYRK1A and CDK5, respectively, using residue-based binding free energies. The residue-based parameters were calculated by molecular mechanics-generalized Born surface area (MM-GBSA) decomposition methods for kinase-ligand complexes modeled by computer ligand docking. Based on the findings from the logistic regression models, we built a three-dimensional (3D) pharmacophore model and chose filter criteria for the multi-step virtual screening. The virtual hit compounds obtained from the screening were assessed for their inhibitory activities against DYRK1A and CDK5 by in vitro assay. Our screening identified two novel selective DYRK1A inhibitors with IC values of several μM for DYRK1A and >100μM for CDK5, which can be further optimized to develop more potent selective DYRK1A inhibitors.

摘要

开发针对特定激酶的选择性抑制剂仍然是激酶靶向药物研发中的一项重大挑战。在此,我们通过关注双特异性酪氨酸磷酸化调节激酶1A(DYRK1A)相对于细胞周期蛋白依赖性激酶5(CDK5)的选择性,对DYRK1A抑制剂进行了多步虚拟筛选。为了研究影响选择性的关键因素,我们构建了逻辑回归模型,分别使用基于残基的结合自由能来区分DYRK1A和CDK5的活性与非活性。基于残基的参数通过分子力学广义玻恩表面积(MM - GBSA)分解方法计算,该方法用于由计算机配体对接建模的激酶 - 配体复合物。基于逻辑回归模型的研究结果,我们构建了一个三维(3D)药效团模型,并为多步虚拟筛选选择了筛选标准。通过体外实验评估从筛选中获得的虚拟命中化合物对DYRK1A和CDK5的抑制活性。我们的筛选鉴定出两种新型的选择性DYRK1A抑制剂,其对DYRK1A的IC值为几微摩尔,对CDK5的IC值大于100微摩尔,这些抑制剂可进一步优化以开发更有效的选择性DYRK1A抑制剂。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验