Fjodorova Marija, Torres Eduardo M, Dunnett Stephen B
Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK.
Brain Repair Group, School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK.
Exp Neurol. 2017 May;291:8-19. doi: 10.1016/j.expneurol.2017.01.010. Epub 2017 Jan 25.
Foetal midbrain progenitors have been shown to survive, give rise to different classes of dopamine neurons and integrate into the host brain alleviating Parkinsonian symptoms following transplantation in patients and animal models of the disease. Dopamine neuron subpopulations in the midbrain, namely A9 and A10, can be identified anatomically based on cell morphology and ascending axonal projections. G protein-gated inwardly rectifying potassium channel Girk2 and the calcium binding protein Calbindin are the two best available histochemical markers currently used to label (with some overlap) A9- and A10-like dopamine neuron subtypes, respectively, in tyrosine hydroxylase expressing neurons both in the midbrain and grafts. Both classes of dopamine neurons survive in grafts in the striatum and extend axonal projections to their normal dorsal and ventral striatal targets depending on phenotype. Nevertheless, grafts transplanted into the dorsal striatum, which is an A9 input nucleus, are enriched for dopamine neurons that express Girk2. It remains to be elucidated whether different transplantation sites favour the differential survival and/or development of concordant dopamine neuron subtypes within the grafts. Here we used rat foetal midbrain progenitors at two developmental stages corresponding to a peak in either A9 or A10 neurogenesis and examined their commitment to respective dopaminergic phenotypes by grafting cells into different forebrain regions that contain targets of either nigral A9 dopamine innervation (dorsal striatum), ventral tegmental area A10 dopamine innervation (nucleus accumbens and prefrontal cortex), or only sparse dopamine but rich noradrenaline innervation (hippocampus). We demonstrate that young (embryonic day, E12), but not older (E14), mesencephalic tissue and the transplant environment influence survival and functional integration of specific subtypes of dopamine neurons into the host brain. We also show that irrespective of donor age A9-like, Girk2-expressing neurons are more responsive to environmental cues in adopting a dopaminergic phenotype during differentiation post-grafting. These novel findings suggest that dopamine progenitors use targets of A9/A10 innervation in the transplantation site to complete maturation and the efficacy of foetal cell replacement therapy in patients may be improved by deriving midbrain tissue at earlier developmental stages than in current practice.
胎儿中脑祖细胞已被证明能够存活,产生不同类型的多巴胺能神经元,并在移植到该疾病的患者和动物模型后整合到宿主大脑中,缓解帕金森症状。中脑中的多巴胺能神经元亚群,即A9和A10,可以根据细胞形态和上升轴突投射在解剖学上进行识别。G蛋白门控内向整流钾通道Girk2和钙结合蛋白钙结合蛋白是目前用于分别标记(有一些重叠)中脑和移植组织中表达酪氨酸羟化酶的神经元中A9样和A10样多巴胺能神经元亚型的两种最佳组织化学标记物。这两类多巴胺能神经元都能在纹状体移植组织中存活,并根据表型将轴突投射延伸到其正常的背侧和腹侧纹状体靶点。然而,移植到作为A9输入核的背侧纹状体中的移植组织富含表达Girk2的多巴胺能神经元。不同的移植部位是否有利于移植组织中相应多巴胺能神经元亚型的差异存活和/或发育,仍有待阐明。在这里,我们使用了处于两个发育阶段的大鼠胎儿中脑祖细胞,这两个阶段分别对应A9或A10神经发生的高峰期,并通过将细胞移植到不同的前脑区域来检查它们对各自多巴胺能表型的定向分化,这些前脑区域包含黑质A9多巴胺能神经支配的靶点(背侧纹状体)、腹侧被盖区A10多巴胺能神经支配的靶点(伏隔核和前额叶皮层),或只有稀疏的多巴胺能但富含去甲肾上腺素能神经支配的区域(海马体)。我们证明,年轻(胚胎第12天,E12)而非年长(E14)的中脑组织以及移植环境会影响特定亚型多巴胺能神经元在宿主大脑中的存活和功能整合。我们还表明,无论供体年龄如何,表达Girk2的A9样神经元在移植后分化过程中对环境信号更敏感,更容易形成多巴胺能表型。这些新发现表明,多巴胺祖细胞利用移植部位A9/A10神经支配的靶点来完成成熟,并且通过获取比目前实践中更早发育阶段的中脑组织,可能会提高胎儿细胞替代疗法在患者中的疗效。