Janesko Benjamin G
Department of Chemistry & Biochemistry, Texas Christian University, 2800 S. University Dr, Fort Worth, TX 76110, USA.
Phys Chem Chem Phys. 2017 Feb 8;19(6):4793-4801. doi: 10.1039/c6cp08108h.
The errors in density functional theory (DFT) calculations can be decomposed into contributions from the exchange-correlation density functional approximation (DFA), and contributions from the approximate electron density generated by that DFA. Standard "semilocal" DFAs have large density-driven delocalization errors for dissociating bonds, radical complexes, metal-ligand complexes, reaction intermediates, and reaction barriers. Several recent studies use Hartree-Fock exchange to reduce these density-driven errors. However, Hartree-Fock calculations can be formally and computationally problematic in periodic systems. I show that Rung 3.5 DFAs, which project the Kohn-Sham one-particle density matrix onto a localized model density matrix at each point in space, can provide a practical alternative. Rung 3.5 densities reduce the aforementioned density-driven errors without empirical parametrization, without the orbital rotation dependence of self-interaction corrections, and without any exact exchange whatsoever. While existing Rung 3.5 DFAs cannot reduce density-driven errors as much as Hartree-Fock exchange, these results offer new prospects for broadening the reach of density-corrected DFT.
密度泛函理论(DFT)计算中的误差可分解为来自交换关联密度泛函近似(DFA)的贡献,以及由该DFA产生的近似电子密度的贡献。标准的“半局域”DFA对于解离键、自由基复合物、金属-配体复合物、反应中间体和反应势垒具有较大的密度驱动离域误差。最近的几项研究使用哈特里-福克交换来减少这些密度驱动的误差。然而,哈特里-福克计算在周期性系统中可能在形式上和计算上存在问题。我表明,第3.5级DFA,即在空间中的每个点将科恩-沙姆单粒子密度矩阵投影到局部模型密度矩阵上,可以提供一种实用的替代方法。第3.5级密度减少了上述密度驱动的误差,无需经验参数化,无需自相互作用校正的轨道旋转依赖性,也无需任何精确交换。虽然现有的第3.5级DFA不能像哈特里-福克交换那样大幅减少密度驱动的误差,但这些结果为拓宽密度校正DFT的应用范围提供了新的前景。