Suppr超能文献

使用科恩-沈自洽场反演法测量密度驱动误差

Measuring Density-Driven Errors Using Kohn-Sham Inversion.

作者信息

Nam Seungsoo, Song Suhwan, Sim Eunji, Burke Kieron

机构信息

Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea.

Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States.

出版信息

J Chem Theory Comput. 2020 Aug 11;16(8):5014-5023. doi: 10.1021/acs.jctc.0c00391. Epub 2020 Jul 28.

Abstract

Kohn-Sham (KS) inversion, that is, the finding of the exact KS potential for a given density, is difficult in localized basis sets. We study the precision and reliability of several inversion schemes, finding estimates of density-driven errors at a useful level of accuracy. In typical cases of substantial density-driven errors, Hartree-Fock density functional theory (HF-DFT) is almost as accurate as DFT evaluated on CCSD(T) densities. A simple approximation in practical HF-DFT also makes errors much smaller than the density-driven errors being calculated. Two paradigm examples, stretched NaCl and the HO·Cl radical, illustrate just how accurate HF-DFT is.

摘要

科恩-沈(KS)反演,即针对给定密度找到精确的KS势,在局域基组中是困难的。我们研究了几种反演方案的精度和可靠性,在有用的精度水平上找到密度驱动误差的估计值。在密度驱动误差较大的典型情况下,哈特里-福克密度泛函理论(HF-DFT)几乎与基于耦合簇单双激发加微扰三重激发(CCSD(T))密度评估的密度泛函理论(DFT)一样准确。实际HF-DFT中的一个简单近似也使误差远小于正在计算的密度驱动误差。两个范例,拉伸的氯化钠和羟基氯自由基,说明了HF-DFT有多准确。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验