Suppr超能文献

利用灾难:在复制叉后建立染色质特异性。

Capitalizing on disaster: Establishing chromatin specificity behind the replication fork.

作者信息

Ramachandran Srinivas, Ahmad Kami, Henikoff Steven

机构信息

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.

Howard Hughes Medical Institute, Seattle, WA, USA.

出版信息

Bioessays. 2017 Apr;39(4). doi: 10.1002/bies.201600150. Epub 2017 Jan 30.

Abstract

Eukaryotic genomes are packaged into nucleosomal chromatin, and genomic activity requires the precise localization of transcription factors, histone modifications and nucleosomes. Classic work described the progressive reassembly and maturation of bulk chromatin behind replication forks. More recent proteomics has detailed the molecular machines that accompany the replicative polymerase to promote rapid histone deposition onto the newly replicated DNA. However, localized chromatin features are transiently obliterated by DNA replication every S phase of the cell cycle. Genomic strategies now observe the rebuilding of locus-specific chromatin features, and reveal surprising delays in transcription factor binding behind replication forks. This implies that transient chromatin disorganization during replication is a central juncture for targeted transcription factor binding within genomes. We propose that transient occlusion of regulatory elements by disorganized nucleosomes during chromatin maturation enforces specificity of factor binding.

摘要

真核生物基因组被包装成核小体染色质,基因组活性需要转录因子、组蛋白修饰和核小体的精确定位。经典研究描述了复制叉后方大量染色质的逐步重新组装和成熟。最近的蛋白质组学详细阐述了伴随复制性聚合酶的分子机器,以促进组蛋白快速沉积到新复制的DNA上。然而,在细胞周期的每个S期,局部染色质特征会被DNA复制暂时消除。现在的基因组策略观察到基因座特异性染色质特征的重建,并揭示了复制叉后方转录因子结合的惊人延迟。这意味着复制过程中短暂的染色质紊乱是基因组内靶向转录因子结合的关键节点。我们提出,在染色质成熟过程中,无序核小体对调控元件的短暂遮挡增强了因子结合的特异性。

相似文献

1
Capitalizing on disaster: Establishing chromatin specificity behind the replication fork.
Bioessays. 2017 Apr;39(4). doi: 10.1002/bies.201600150. Epub 2017 Jan 30.
2
Chromatin dynamics and DNA replication roadblocks.
DNA Repair (Amst). 2021 Aug;104:103140. doi: 10.1016/j.dnarep.2021.103140. Epub 2021 May 23.
3
Chromatin Replication and Histone Dynamics.
Adv Exp Med Biol. 2017;1042:311-333. doi: 10.1007/978-981-10-6955-0_15.
5
Transcriptional Regulators Compete with Nucleosomes Post-replication.
Cell. 2016 Apr 21;165(3):580-92. doi: 10.1016/j.cell.2016.02.062. Epub 2016 Apr 7.
6
Chromatin dynamics at the replication fork: there's more to life than histones.
Curr Opin Genet Dev. 2013 Apr;23(2):140-6. doi: 10.1016/j.gde.2012.12.007. Epub 2013 Jan 21.
7
The histone chaperone facilitates chromatin transcription (FACT) protein maintains normal replication fork rates.
J Biol Chem. 2011 Sep 2;286(35):30504-30512. doi: 10.1074/jbc.M111.264721. Epub 2011 Jul 7.
8
Replication fork stalling elicits chromatin compaction for the stability of stalling replication forks.
Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14563-14572. doi: 10.1073/pnas.1821475116. Epub 2019 Jul 1.
9
Changing the DNA landscape: putting a SPN on chromatin.
Curr Top Microbiol Immunol. 2003;274:171-201. doi: 10.1007/978-3-642-55747-7_7.
10
Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.
Mol Cell. 2017 Jan 5;65(1):117-130. doi: 10.1016/j.molcel.2016.11.016. Epub 2016 Dec 15.

引用本文的文献

1
The single-molecule accessibility landscape of newly replicated mammalian chromatin.
Cell. 2025 Jan 9;188(1):237-252.e19. doi: 10.1016/j.cell.2024.10.039. Epub 2024 Nov 15.
2
Nucleotide depletion promotes cell fate transitions by inducing DNA replication stress.
Dev Cell. 2024 Aug 19;59(16):2203-2221.e15. doi: 10.1016/j.devcel.2024.05.010. Epub 2024 May 31.
3
Nucleosome assembly and disassembly pathways in vitro.
PLoS One. 2022 Jul 13;17(7):e0267382. doi: 10.1371/journal.pone.0267382. eCollection 2022.
4
Mitotic Inheritance of PRC2-Mediated Silencing: Mechanistic Insights and Developmental Perspectives.
Front Plant Sci. 2020 Mar 9;11:262. doi: 10.3389/fpls.2020.00262. eCollection 2020.
5
Asymmetric Histone Inheritance in Asymmetrically Dividing Stem Cells.
Trends Genet. 2020 Jan;36(1):30-43. doi: 10.1016/j.tig.2019.10.004. Epub 2019 Nov 18.
6
RSC-Associated Subnucleosomes Define MNase-Sensitive Promoters in Yeast.
Mol Cell. 2019 Jan 17;73(2):238-249.e3. doi: 10.1016/j.molcel.2018.10.046. Epub 2018 Dec 13.
7
Replication-Coupled Nucleosome Assembly in the Passage of Epigenetic Information and Cell Identity.
Trends Biochem Sci. 2018 Feb;43(2):136-148. doi: 10.1016/j.tibs.2017.12.003. Epub 2017 Dec 29.

本文引用的文献

2
Nonhistone Lysine Methylation in the Regulation of Cancer Pathways.
Cold Spring Harb Perspect Med. 2016 Nov 1;6(11):a026435. doi: 10.1101/cshperspect.a026435.
3
Dynamics of Nucleosome Positioning Maturation following Genomic Replication.
Cell Rep. 2016 Sep 6;16(10):2651-2665. doi: 10.1016/j.celrep.2016.07.083. Epub 2016 Aug 25.
4
Role of the Polycomb Repressive Complex 2 (PRC2) in Transcriptional Regulation and Cancer.
Cold Spring Harb Perspect Med. 2016 Sep 1;6(9):a026575. doi: 10.1101/cshperspect.a026575.
5
Chromatin dynamics during DNA replication.
Genome Res. 2016 Sep;26(9):1245-56. doi: 10.1101/gr.201244.115. Epub 2016 May 25.
6
Replication-Coupled Nucleosome Assembly and Positioning by ATP-Dependent Chromatin-Remodeling Enzymes.
Cell Rep. 2016 Apr 26;15(4):715-723. doi: 10.1016/j.celrep.2016.03.059. Epub 2016 Apr 14.
7
8
A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X.
Semin Cell Dev Biol. 2016 Aug;56:19-34. doi: 10.1016/j.semcdb.2016.03.023. Epub 2016 Apr 9.
9
Transcriptional Regulators Compete with Nucleosomes Post-replication.
Cell. 2016 Apr 21;165(3):580-92. doi: 10.1016/j.cell.2016.02.062. Epub 2016 Apr 7.
10
Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2.
Science. 2015 Oct 16;350(6258):aac4383. doi: 10.1126/science.aac4383. Epub 2015 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验