Suppr超能文献

Distinct presynaptic control of dopamine release in striosomal and matrix areas of the cat caudate nucleus.

作者信息

Kemel M L, Desban M, Glowinski J, Gauchy C

机构信息

Laboratoire de Neuropharmacologie, Collège de France, Paris.

出版信息

Proc Natl Acad Sci U S A. 1989 Nov;86(22):9006-10. doi: 10.1073/pnas.86.22.9006.

Abstract

By use of a sensitive in vitro microsuperfusion method, the cholinergic prsynaptic control of dopamine release was investigated in a prominent striosome (areas poor in acetylcholinesterase activity) located within the core of cat caudate nucleus and also in adjacent matrix area. The spontaneous release of [3H]dopamine continuously synthesized from [3H]tyrosine in the matrix area was found to be twice that in the striosomal area; the spontaneous and potassium-evoked releases of [3H]dopamine were calcium-dependent in both compartments. With 10(-6) M tetrodotoxin, 5 x 10(-5) M acetylcholine stimulated [3H]dopamine release in both striosomal and matrix areas, effects completely antagonized by atropine (10(-6) M), thus showing the involvement of muscarinic receptors located on dopaminergic nerve terminals. Experiments without tetrodotoxin revealed a more complex regulation of dopamine release in the matrix: (i) In contrast to results seen in the striosome, acetylcholine induced only a transient stimulatory effect on matrix dopamine release. (ii) Although 10(-6) M atropine completely abolished the cholinergic stimulatory effect on [3H]dopamine release in striosomal area, delayed and prolonged stimulation of [3H]dopamine release was seen with atropine in the matrix. The latter effect was completely abolished by the nicotinic antagonist pempidine (10(-5) M). Therefore, in the matrix, in addition to its direct (tetrodotoxin-insensitive) facilitatory action on [3H]dopamine release, acetylcholine exerts two indirect (tetrodotoxin-sensitive) opposing effects: an inhibition and a stimulation of [3H]dopamine release mediated by muscarinic and nicotinic receptors, respectively.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d143/298421/c083610c89b5/pnas00289-0422-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验