Department of Physics, California Institute of Technology , Pasadena, California 91125, United States.
Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology , Pasadena, California 91125, United States.
J Phys Chem B. 2017 Apr 20;121(15):3813-3824. doi: 10.1021/acs.jpcb.6b12672. Epub 2017 Feb 21.
We present a framework for computing the gating properties of ligand-gated ion channel mutants using the Monod-Wyman-Changeux (MWC) model of allostery. We derive simple analytic formulas for key functional properties such as the leakiness, dynamic range, half-maximal effective concentration ([EC]), and effective Hill coefficient, and explore the full spectrum of phenotypes that are accessible through mutations. Specifically, we consider mutations in the channel pore of nicotinic acetylcholine receptor (nAChR) and the ligand binding domain of a cyclic nucleotide-gated (CNG) ion channel, demonstrating how each mutation can be characterized as only affecting a subset of the biophysical parameters. In addition, we show how the unifying perspective offered by the MWC model allows us, perhaps surprisingly, to collapse the plethora of dose-response data from different classes of ion channels into a universal family of curves.
我们提出了一个使用变构的 Monod-Wyman-Changeux(MWC)模型来计算配体门控离子通道突变体的门控特性的框架。我们推导出了关键功能特性(如漏泄性、动态范围、半最大有效浓度[EC]和有效 Hill 系数)的简单解析公式,并探索了通过突变可获得的全谱表型。具体而言,我们考虑了烟碱型乙酰胆碱受体(nAChR)通道孔和环状核苷酸门控(CNG)离子通道配体结合域中的突变,证明了每种突变如何仅影响生物物理参数的一个子集。此外,我们展示了 MWC 模型提供的统一视角如何使我们能够(也许令人惊讶地)将来自不同类别的离子通道的大量剂量反应数据归结为通用的曲线家族。