Suppr超能文献

别构调节离子通道突变体的莫诺-维曼-邱奇分析。

Monod-Wyman-Changeux Analysis of Ligand-Gated Ion Channel Mutants.

机构信息

Department of Physics, California Institute of Technology , Pasadena, California 91125, United States.

Department of Applied Physics and Division of Biology and Biological Engineering, California Institute of Technology , Pasadena, California 91125, United States.

出版信息

J Phys Chem B. 2017 Apr 20;121(15):3813-3824. doi: 10.1021/acs.jpcb.6b12672. Epub 2017 Feb 21.

Abstract

We present a framework for computing the gating properties of ligand-gated ion channel mutants using the Monod-Wyman-Changeux (MWC) model of allostery. We derive simple analytic formulas for key functional properties such as the leakiness, dynamic range, half-maximal effective concentration ([EC]), and effective Hill coefficient, and explore the full spectrum of phenotypes that are accessible through mutations. Specifically, we consider mutations in the channel pore of nicotinic acetylcholine receptor (nAChR) and the ligand binding domain of a cyclic nucleotide-gated (CNG) ion channel, demonstrating how each mutation can be characterized as only affecting a subset of the biophysical parameters. In addition, we show how the unifying perspective offered by the MWC model allows us, perhaps surprisingly, to collapse the plethora of dose-response data from different classes of ion channels into a universal family of curves.

摘要

我们提出了一个使用变构的 Monod-Wyman-Changeux(MWC)模型来计算配体门控离子通道突变体的门控特性的框架。我们推导出了关键功能特性(如漏泄性、动态范围、半最大有效浓度[EC]和有效 Hill 系数)的简单解析公式,并探索了通过突变可获得的全谱表型。具体而言,我们考虑了烟碱型乙酰胆碱受体(nAChR)通道孔和环状核苷酸门控(CNG)离子通道配体结合域中的突变,证明了每种突变如何仅影响生物物理参数的一个子集。此外,我们展示了 MWC 模型提供的统一视角如何使我们能够(也许令人惊讶地)将来自不同类别的离子通道的大量剂量反应数据归结为通用的曲线家族。

相似文献

1
Monod-Wyman-Changeux Analysis of Ligand-Gated Ion Channel Mutants.
J Phys Chem B. 2017 Apr 20;121(15):3813-3824. doi: 10.1021/acs.jpcb.6b12672. Epub 2017 Feb 21.
2
Nicotinic receptors: From protein allostery to computational neuropharmacology.
Mol Aspects Med. 2022 Apr;84:101044. doi: 10.1016/j.mam.2021.101044. Epub 2021 Oct 13.
3
An analytic solution to the Monod-Wyman-Changeux model and all parameters in this model.
Biophys J. 1989 Feb;55(2):275-80. doi: 10.1016/S0006-3495(89)82802-4.
4
Myasthenic nicotinic receptor mutant interpreted in terms of the allosteric model.
C R Acad Sci III. 1997 Dec;320(12):953-61. doi: 10.1016/s0764-4469(97)82468-7.
6
Thinking in cycles: MWC is a good model for acetylcholine receptor-channels.
J Physiol. 2012 Jan 1;590(1):93-8. doi: 10.1113/jphysiol.2011.214684. Epub 2011 Aug 1.
7
Statistical mechanics of Monod-Wyman-Changeux (MWC) models.
J Mol Biol. 2013 May 13;425(9):1433-60. doi: 10.1016/j.jmb.2013.03.013. Epub 2013 Mar 14.
9
Hill coefficients of a polymodal Monod-Wyman-Changeux model for ion channel gating.
Biophys J. 2010 Aug 4;99(3):L29-31. doi: 10.1016/j.bpj.2010.05.018.

引用本文的文献

1
A structure-based computational model of IPR1 incorporating Ca and IP3 regulation.
Biophys J. 2024 May 21;123(10):1274-1288. doi: 10.1016/j.bpj.2024.04.014. Epub 2024 Apr 16.
3
The dual-gate model for pentameric ligand-gated ion channels activation and desensitization.
J Physiol. 2018 May 15;596(10):1873-1902. doi: 10.1113/JP275100. Epub 2018 Apr 17.

本文引用的文献

1
Emergence of ion channel modal gating from independent subunit kinetics.
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):E5288-97. doi: 10.1073/pnas.1604090113. Epub 2016 Aug 22.
2
Cracking the allosteric code of NMR chemical shifts.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9407-9. doi: 10.1073/pnas.1611068113. Epub 2016 Aug 10.
3
Napoleon Is in Equilibrium.
Annu Rev Condens Matter Phys. 2015 Mar;6:85-111. doi: 10.1146/annurev-conmatphys-031214-014558.
4
Allosteric proteins as logarithmic sensors.
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4423-30. doi: 10.1073/pnas.1601791113. Epub 2016 Jul 7.
5
Origins of Allostery and Evolvability in Proteins: A Case Study.
Cell. 2016 Jul 14;166(2):468-480. doi: 10.1016/j.cell.2016.05.047. Epub 2016 Jun 16.
6
Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels.
Nat Struct Mol Biol. 2016 Jun 7;23(6):494-502. doi: 10.1038/nsmb.3214.
7
Quantifying the cooperative subunit action in a multimeric membrane receptor.
Sci Rep. 2016 Feb 9;6:20974. doi: 10.1038/srep20974.
8
Conversion of a light-driven proton pump into a light-gated ion channel.
Sci Rep. 2015 Nov 24;5:16450. doi: 10.1038/srep16450.
9
Perspective: Sloppiness and emergent theories in physics, biology, and beyond.
J Chem Phys. 2015 Jul 7;143(1):010901. doi: 10.1063/1.4923066.
10
Evolutionary meandering of intermolecular interactions along the drift barrier.
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):E30-8. doi: 10.1073/pnas.1421641112. Epub 2014 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验