U.S. Geological Survey, Western Ecological Research Center, 160 North Stephanie Street, Henderson, Nevada, 89074, USA.
University of Colorado, Boulder, Colorado, 80309, USA.
Ecol Appl. 2017 Mar;27(2):429-445. doi: 10.1002/eap.1447. Epub 2017 Jan 30.
Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive divergence in Sphaeralcea. We describe multivariate statistical approaches for interpolating spatial patterns of adaptive divergence while accounting for potential bias due to neutral genetic structure. Through a spatial bootstrapping procedure, we also visualize patterns in the magnitude of model uncertainty. Finally, we introduce an interactive, distance-based mapping approach that explicitly links marker-based models of adaptive divergence with local or admixture seed sourcing strategies, promoting effective native plant restoration.
由于干扰的协同驱动因素以及不可预测的环境条件,恢复旱地生态系统是一个全球性挑战。旱地植物物种已经进化出复杂的生活史策略,以应对波动的资源和极端气候条件。尽管很少量化,但这些物种中可能广泛存在局部适应,并且可能会影响恢复结果。将繁殖体重新引入以恢复旱地生态系统的常见做法,通常跨越很大的空间尺度,迫使我们评估这些物种内的适应性分歧。这些评估对于理解大规模操纵基因流的后果以及预测恢复工作的成功至关重要。但是,通过传统的普通花园实验获得感兴趣物种的遗传信息可能既困难又昂贵。最近景观遗传学的进展为识别非模型物种中适应性遗传变异的环境驱动因素提供了基于标记的方法,但仍需要工具将这些方法与生态恢复的实际方面联系起来。在这里,我们将空间显式景观遗传模型与灵活的可视化工具相结合,展示了如何通过具有成本效益的适应性遗传分歧评估来促进生态恢复中不同种子来源策略的实施。我们将这些方法应用于在两种具有高度恢复重要性的莫哈韦沙漠灌木物种中进行的扩增片段长度多态性(AFLP)标记基因分型:长寿命、风授粉的裸子植物麻黄属植物和短命、昆虫授粉的被子植物半日花。平均年温度被确定为两种物种适应性遗传分歧的重要驱动因素。麻黄属植物对降水变异性的适应性分歧更强,而温度变异性和降水平均值解释了半日花适应性分歧的更大部分。我们描述了用于插值适应遗传分歧空间模式的多元统计方法,同时考虑了由于中性遗传结构而导致的潜在偏差。通过空间自举程序,我们还可以可视化模型不确定性幅度的模式。最后,我们引入了一种交互式、基于距离的映射方法,该方法明确将基于标记的适应遗传分歧模型与本地或杂种种子来源策略联系起来,促进了有效的本地植物恢复。