Suppr超能文献

分子途径:癌症治疗中的低氧激活前体药物

Molecular Pathways: Hypoxia-Activated Prodrugs in Cancer Therapy.

作者信息

Baran Natalia, Konopleva Marina

机构信息

Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Clin Cancer Res. 2017 May 15;23(10):2382-2390. doi: 10.1158/1078-0432.CCR-16-0895. Epub 2017 Jan 30.

Abstract

Hypoxia is a known feature of aggressive solid tumors as well as a critical hallmark of the niche in aggressive hematologic malignances. Hypoxia is associated with insufficient response to standard therapy, resulting in disease progression and curtailed patients' survival through maintenance of noncycling cancer stem-like cells. A better understanding of the mechanisms and signaling pathways induced by hypoxia is essential to overcoming these effects. Recent findings demonstrate that bone marrow in the setting of hematologic malignancies is highly hypoxic, and that progression of the disease is associated with expansion of hypoxic niches and stabilization of the oncogenic hypoxia-inducible factor-1alpha (HIF1α). Solid tumors have also been shown to harbor hypoxic areas, maintaining survival of cancer cells via the HIF1α pathway. Developing new strategies for targeting hypoxia has become a crucial approach in modern cancer therapy. The number of preclinical and clinical trials targeting low-oxygen tumor compartments or the hypoxic bone marrow niche via hypoxia-activated prodrugs is increasing. This review discusses the development of the hypoxia-activated prodrugs and their applicability in treating both hematologic malignancies and solid tumors. .

摘要

缺氧是侵袭性实体瘤的一个已知特征,也是侵袭性血液系统恶性肿瘤微环境的一个关键标志。缺氧与对标准治疗的反应不足有关,通过维持非循环的癌症干细胞样细胞导致疾病进展并缩短患者生存期。更好地理解缺氧诱导的机制和信号通路对于克服这些影响至关重要。最近的研究结果表明,血液系统恶性肿瘤背景下的骨髓高度缺氧,并且疾病进展与缺氧微环境的扩大和致癌性缺氧诱导因子-1α(HIF1α)的稳定有关。实体瘤也已被证明存在缺氧区域,通过HIF1α途径维持癌细胞的存活。开发针对缺氧的新策略已成为现代癌症治疗的关键方法。通过缺氧激活前药靶向低氧肿瘤区室或缺氧骨髓微环境的临床前和临床试验数量正在增加。本文综述了缺氧激活前药的发展及其在治疗血液系统恶性肿瘤和实体瘤中的适用性。

相似文献

1
Molecular Pathways: Hypoxia-Activated Prodrugs in Cancer Therapy.
Clin Cancer Res. 2017 May 15;23(10):2382-2390. doi: 10.1158/1078-0432.CCR-16-0895. Epub 2017 Jan 30.
2
Hypoxia-activated nanomedicines for effective cancer therapy.
Eur J Med Chem. 2020 Jun 1;195:112274. doi: 10.1016/j.ejmech.2020.112274. Epub 2020 Mar 30.
3
Targeting hypoxia in the leukemia microenvironment.
Int J Hematol Oncol. 2013 Aug 1;2(4):279-288. doi: 10.2217/IJH.13.32.
4
The role of hypoxia and exploitation of the hypoxic environment in hematologic malignancies.
Mol Cancer Res. 2014 Oct;12(10):1347-54. doi: 10.1158/1541-7786.MCR-14-0028. Epub 2014 Aug 26.
5
Advanced nanotechnology for hypoxia-associated antitumor therapy.
Nanoscale. 2020 Feb 7;12(5):2855-2874. doi: 10.1039/c9nr09071a. Epub 2020 Jan 22.
6
Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α.
Clin Exp Pharmacol Physiol. 2017 Feb;44(2):153-161. doi: 10.1111/1440-1681.12693.
7
Clinical Advances of Hypoxia-Activated Prodrugs in Combination With Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2017 Aug 1;98(5):1183-1196. doi: 10.1016/j.ijrobp.2017.03.024. Epub 2017 Mar 22.
8
Hypoxia as a biomarker for radioresistant cancer stem cells.
Int J Radiat Biol. 2014 Aug;90(8):636-52. doi: 10.3109/09553002.2014.916841. Epub 2014 Jun 25.

引用本文的文献

1
Imaging hypoxia for head and neck cancer: current status, challenges, and prospects.
Theranostics. 2025 Jul 11;15(16):8012-8030. doi: 10.7150/thno.112781. eCollection 2025.
5
Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control.
Front Med. 2025 Feb;19(1):23-52. doi: 10.1007/s11684-024-1107-1. Epub 2025 Jan 2.
6
A novel lineage-tracing tool reveals that hypoxic tumor cells drive tumor relapse after radiotherapy.
Radiother Oncol. 2025 Jan;202:110592. doi: 10.1016/j.radonc.2024.110592. Epub 2024 Oct 18.
7
The potential of lenvatinib in breast cancer therapy.
Med Oncol. 2024 Aug 22;41(9):233. doi: 10.1007/s12032-024-02477-4.
9
Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer.
Molecules. 2024 Feb 29;29(5):1076. doi: 10.3390/molecules29051076.
10
Exploring chronic and transient tumor hypoxia for predicting the efficacy of hypoxia-activated pro-drugs.
NPJ Syst Biol Appl. 2024 Jan 5;10(1):1. doi: 10.1038/s41540-023-00327-z.

本文引用的文献

1
Targeting renal cell carcinoma with a HIF-2 antagonist.
Nature. 2016 Nov 3;539(7627):112-117. doi: 10.1038/nature19796. Epub 2016 Sep 5.
4
Hypoxia-directed and activated theranostic agent: Imaging and treatment of solid tumor.
Biomaterials. 2016 Oct;104:119-28. doi: 10.1016/j.biomaterials.2016.07.010. Epub 2016 Jul 14.
5
Current relevance of hypoxia in head and neck cancer.
Oncotarget. 2016 Aug 2;7(31):50781-50804. doi: 10.18632/oncotarget.9549.
7
Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer.
Oncogene. 2017 Jan 26;36(4):439-445. doi: 10.1038/onc.2016.225. Epub 2016 Jun 27.
9
Targeting hypoxic microenvironment of pancreatic xenografts with the hypoxia-activated prodrug TH-302.
Oncotarget. 2016 Jun 7;7(23):33571-80. doi: 10.18632/oncotarget.9654.
10
MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts.
PLoS One. 2016 May 26;11(5):e0155289. doi: 10.1371/journal.pone.0155289. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验