Suppr超能文献

迈向人类大脑中经验获取与传递背后的拓扑机制。

Towards Topological Mechanisms Underlying Experience Acquisition and Transmission in the Human Brain.

作者信息

Tozzi Arturo, Peters James F

机构信息

Center for Nonlinear Science, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.

Computational Intelligence Laboratory, University of Manitoba, R3T 5V6, Winnipeg, MB, Canada.

出版信息

Integr Psychol Behav Sci. 2017 Jun;51(2):303-323. doi: 10.1007/s12124-017-9380-z.

Abstract

Experience is a process of awareness and mastery of facts or events, gained through actual observation or second-hand knowledge. Recent findings reinforce the idea that a naturalized epistemological approach is needed to further advance our understanding of the nervous mechanisms underlying experience. This essay is an effort to build a coherent topological-based framework able to elucidate particular aspects of experience, e.g., how it is acquired by a single individual, transmitted to others and collectively stored in form of general ideas. Taking into account concepts from neuroscience, algebraic topology and Richard Avenarius' philosophical analytical approach, we provide a scheme which is cast in an empirically testable fashion. In particular, we emphasize the foremost role of variants of the Borsuk-Ulam theorem, which tells us that, when a pair of opposite (antipodal) points on a sphere are mapped onto a single point in Euclidean space, the projection provides a description of both antipodal points. These antipodes stand for nervous functions and activities of the brain correlated with the mechanisms of acquisition and transmission of experience.

摘要

经验是一个通过实际观察或间接知识获得对事实或事件的认知和掌握的过程。最近的研究结果强化了这样一种观点,即需要一种自然化的认识论方法来进一步推进我们对经验背后神经机制的理解。本文致力于构建一个基于拓扑学的连贯框架,以阐明经验的特定方面,例如个体如何获取经验、将其传递给他人并以一般概念的形式集体存储。考虑到神经科学、代数拓扑学以及理查德·阿芬那留斯的哲学分析方法中的概念,我们提供了一个可以通过实证检验的方案。特别是,我们强调了博苏克 - 乌拉姆定理变体的首要作用,该定理告诉我们,当球面上的一对对映(反极点)点被映射到欧几里得空间中的单个点时,该投影提供了对两个对映点的描述。这些对映点代表与经验获取和传递机制相关的大脑神经功能和活动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验