Déli Eva, Tozzi Arturo, Peters James F
Institute for Consciousness Studies (ICS), Benczurter 9, Nyíregyháza, 4400 Hungary.
Center for Nonlinear Science, University of North Texas, 1155 Union Circle, #311427, Denton, TX 76203-5017 USA.
Cogn Neurodyn. 2017 Dec;11(6):539-552. doi: 10.1007/s11571-017-9450-4. Epub 2017 Aug 23.
Brain electric activity exhibits two important features: oscillations with different timescales, characterized by diverse functional and psychological outcomes, and a temporal power law distribution. In order to further investigate the relationships between low- and high- frequency spikes in the brain, we used a variant of the Borsuk-Ulam theorem which states that, when we assess the nervous activity as embedded in a sphere equipped with a fractal dimension, we achieve two antipodal points with similar features (the slow and fast, scale-free oscillations). We demonstrate that slow and fast nervous oscillations mirror each other over time via a sinusoid relationship and provide, through the Bloch theorem from solid-state physics, the possible equation which links the two timescale activities. We show that, based on topological findings, nervous activities occurring in micro-levels are projected to single activities at meso- and macro-levels. This means that brain functions assessed at the higher scale of the whole brain necessarily display a counterpart in the lower ones, and vice versa. Our topological approach makes it possible to assess brain functions both based on entropy, and in the general terms of particle trajectories taking place on donut-like manifolds. Condensed brain activities might give rise to ideas and concepts by combination of different functional and anatomical levels. Furthermore, cognitive phenomena, as well as social activity can be described by the laws of quantum mechanics; memories and decisions exhibit holographic organization. In physics, the term duality refers to a case where two seemingly different systems turn out to be equivalent. This topological duality holds for all the types of spatio-temporal brain activities, independent of their inter- and intra-level relationships, strength, magnitude and boundaries, allowing us to connect the physiological manifestations of consciousness to the electric activities of the brain.
具有不同时间尺度的振荡,其特征在于多样的功能和心理结果,以及时间幂律分布。为了进一步研究大脑中低频和高频尖峰之间的关系,我们使用了博苏克 - 乌拉姆定理的一个变体,该定理指出,当我们将神经活动评估为嵌入在具有分形维数的球体中时,我们会得到两个具有相似特征的对映点(慢振荡和快振荡,无标度振荡)。我们证明,慢振荡和快振荡通过正弦关系随时间相互镜像,并通过固态物理学中的布洛赫定理,给出了连接这两种时间尺度活动的可能方程。我们表明,基于拓扑学发现,微观层面发生的神经活动会投影到中观和宏观层面的单一活动上。这意味着在全脑更高尺度上评估的脑功能必然在较低尺度上有对应物,反之亦然。我们的拓扑学方法使得既可以基于熵,也可以从发生在甜甜圈状流形上的粒子轨迹的一般角度来评估脑功能。凝聚的脑活动可能通过不同功能和解剖层面的组合产生思想和概念。此外,认知现象以及社会活动可以用量子力学定律来描述;记忆和决策呈现全息组织。在物理学中,对偶性一词指的是两个看似不同的系统结果却是等价的情况。这种拓扑对偶性适用于所有类型的时空脑活动,无论它们的层间和层内关系、强度、量级和边界如何,使我们能够将意识的生理表现与脑电活动联系起来。