Suppr超能文献

短与快的大脑时间尺度之间的关系。

Relationships between short and fast brain timescales.

作者信息

Déli Eva, Tozzi Arturo, Peters James F

机构信息

Institute for Consciousness Studies (ICS), Benczurter 9, Nyíregyháza, 4400 Hungary.

Center for Nonlinear Science, University of North Texas, 1155 Union Circle, #311427, Denton, TX 76203-5017 USA.

出版信息

Cogn Neurodyn. 2017 Dec;11(6):539-552. doi: 10.1007/s11571-017-9450-4. Epub 2017 Aug 23.

Abstract

Brain electric activity exhibits two important features: oscillations with different timescales, characterized by diverse functional and psychological outcomes, and a temporal power law distribution. In order to further investigate the relationships between low- and high- frequency spikes in the brain, we used a variant of the Borsuk-Ulam theorem which states that, when we assess the nervous activity as embedded in a sphere equipped with a fractal dimension, we achieve two antipodal points with similar features (the slow and fast, scale-free oscillations). We demonstrate that slow and fast nervous oscillations mirror each other over time via a sinusoid relationship and provide, through the Bloch theorem from solid-state physics, the possible equation which links the two timescale activities. We show that, based on topological findings, nervous activities occurring in micro-levels are projected to single activities at meso- and macro-levels. This means that brain functions assessed at the higher scale of the whole brain necessarily display a counterpart in the lower ones, and vice versa. Our topological approach makes it possible to assess brain functions both based on entropy, and in the general terms of particle trajectories taking place on donut-like manifolds. Condensed brain activities might give rise to ideas and concepts by combination of different functional and anatomical levels. Furthermore, cognitive phenomena, as well as social activity can be described by the laws of quantum mechanics; memories and decisions exhibit holographic organization. In physics, the term duality refers to a case where two seemingly different systems turn out to be equivalent. This topological duality holds for all the types of spatio-temporal brain activities, independent of their inter- and intra-level relationships, strength, magnitude and boundaries, allowing us to connect the physiological manifestations of consciousness to the electric activities of the brain.

摘要

脑电活动呈现出两个重要特征

具有不同时间尺度的振荡,其特征在于多样的功能和心理结果,以及时间幂律分布。为了进一步研究大脑中低频和高频尖峰之间的关系,我们使用了博苏克 - 乌拉姆定理的一个变体,该定理指出,当我们将神经活动评估为嵌入在具有分形维数的球体中时,我们会得到两个具有相似特征的对映点(慢振荡和快振荡,无标度振荡)。我们证明,慢振荡和快振荡通过正弦关系随时间相互镜像,并通过固态物理学中的布洛赫定理,给出了连接这两种时间尺度活动的可能方程。我们表明,基于拓扑学发现,微观层面发生的神经活动会投影到中观和宏观层面的单一活动上。这意味着在全脑更高尺度上评估的脑功能必然在较低尺度上有对应物,反之亦然。我们的拓扑学方法使得既可以基于熵,也可以从发生在甜甜圈状流形上的粒子轨迹的一般角度来评估脑功能。凝聚的脑活动可能通过不同功能和解剖层面的组合产生思想和概念。此外,认知现象以及社会活动可以用量子力学定律来描述;记忆和决策呈现全息组织。在物理学中,对偶性一词指的是两个看似不同的系统结果却是等价的情况。这种拓扑对偶性适用于所有类型的时空脑活动,无论它们的层间和层内关系、强度、量级和边界如何,使我们能够将意识的生理表现与脑电活动联系起来。

相似文献

1
Relationships between short and fast brain timescales.
Cogn Neurodyn. 2017 Dec;11(6):539-552. doi: 10.1007/s11571-017-9450-4. Epub 2017 Aug 23.
2
The common features of different brain activities.
Neurosci Lett. 2019 Jan 23;692:41-46. doi: 10.1016/j.neulet.2018.10.054. Epub 2018 Oct 29.
3
Towards Topological Mechanisms Underlying Experience Acquisition and Transmission in the Human Brain.
Integr Psychol Behav Sci. 2017 Jun;51(2):303-323. doi: 10.1007/s12124-017-9380-z.
4
From abstract topology to real thermodynamic brain activity.
Cogn Neurodyn. 2017 Jun;11(3):283-292. doi: 10.1007/s11571-017-9431-7. Epub 2017 Mar 14.
5
A topological approach unveils system invariances and broken symmetries in the brain.
J Neurosci Res. 2016 May;94(5):351-65. doi: 10.1002/jnr.23720. Epub 2016 Feb 16.
6
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
7
Towards a fourth spatial dimension of brain activity.
Cogn Neurodyn. 2016 Jun;10(3):189-99. doi: 10.1007/s11571-016-9379-z. Epub 2016 Feb 3.
8
What is it like to be "the same"?
Prog Biophys Mol Biol. 2018 Mar;133:30-35. doi: 10.1016/j.pbiomolbio.2017.10.005. Epub 2017 Oct 31.
9
Projective mechanisms subtending real world phenomena wipe away cause effect relationships.
Prog Biophys Mol Biol. 2020 Mar;151:1-13. doi: 10.1016/j.pbiomolbio.2019.12.002. Epub 2019 Dec 12.
10
Topodynamics of metastable brains.
Phys Life Rev. 2017 Jul;21:1-20. doi: 10.1016/j.plrev.2017.03.001. Epub 2017 Mar 23.

引用本文的文献

1
How the Brain Becomes the Mind: Can Thermodynamics Explain the Emergence and Nature of Emotions?
Entropy (Basel). 2022 Oct 20;24(10):1498. doi: 10.3390/e24101498.
2
The brain and its time: intrinsic neural timescales are key for input processing.
Commun Biol. 2021 Aug 16;4(1):970. doi: 10.1038/s42003-021-02483-6.
3
Aperiodic stochastic resonance in neural information processing with Gaussian colored noise.
Cogn Neurodyn. 2021 Jun;15(3):517-532. doi: 10.1007/s11571-020-09632-3. Epub 2020 Sep 18.
4
Energy features in spontaneous up and down oscillations.
Cogn Neurodyn. 2021 Feb;15(1):65-75. doi: 10.1007/s11571-020-09597-3. Epub 2020 May 29.
5
Voxel-Wise Brain-Wide Functional Connectivity Abnormalities in Patients with Primary Blepharospasm at Rest.
Neural Plast. 2021 Jan 6;2021:6611703. doi: 10.1155/2021/6611703. eCollection 2021.
6
Electroencephalographic correlates of body shape concerns: an eLORETA functional connectivity study.
Cogn Neurodyn. 2020 Oct;14(5):723-729. doi: 10.1007/s11571-020-09618-1. Epub 2020 Jul 23.
7
Removing uncertainty in neural networks.
Cogn Neurodyn. 2020 Jun;14(3):339-345. doi: 10.1007/s11571-020-09574-w. Epub 2020 Feb 27.
8
Decoding disparity categories in 3-dimensional images from fMRI data using functional connectivity patterns.
Cogn Neurodyn. 2020 Apr;14(2):169-179. doi: 10.1007/s11571-019-09557-6. Epub 2019 Oct 9.
9
Cortical temporal hierarchy is immature in middle childhood.
Neuroimage. 2020 Aug 1;216:116616. doi: 10.1016/j.neuroimage.2020.116616. Epub 2020 Feb 11.
10
Functional and effective connectivity based features of EEG signals for object recognition.
Cogn Neurodyn. 2019 Dec;13(6):555-566. doi: 10.1007/s11571-019-09556-7. Epub 2019 Oct 1.

本文引用的文献

1
Astroglial hydro-ionic waves guided by the extracellular matrix: An exploratory model.
J Integr Neurosci. 2017;16(1):57-72. doi: 10.3233/JIN-160003.
2
Scale-freeness of dominant and piecemeal perceptions during binocular rivalry.
Cogn Neurodyn. 2017 Aug;11(4):319-326. doi: 10.1007/s11571-017-9434-4. Epub 2017 Mar 25.
3
A repetitive modular oscillation underlies human brain electric activity.
Neurosci Lett. 2017 Jul 13;653:234-238. doi: 10.1016/j.neulet.2017.05.051. Epub 2017 May 26.
4
Topodynamics of metastable brains.
Phys Life Rev. 2017 Jul;21:1-20. doi: 10.1016/j.plrev.2017.03.001. Epub 2017 Mar 23.
5
Observation of a discrete time crystal.
Nature. 2017 Mar 8;543(7644):217-220. doi: 10.1038/nature21413.
6
Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images.
Front Hum Neurosci. 2017 Feb 1;11:38. doi: 10.3389/fnhum.2017.00038. eCollection 2017.
7
Situating the default-mode network along a principal gradient of macroscale cortical organization.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12574-12579. doi: 10.1073/pnas.1608282113. Epub 2016 Oct 18.
8
Mind-wandering as spontaneous thought: a dynamic framework.
Nat Rev Neurosci. 2016 Nov;17(11):718-731. doi: 10.1038/nrn.2016.113. Epub 2016 Sep 22.
9
New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.
Front Hum Neurosci. 2016 May 26;10:247. doi: 10.3389/fnhum.2016.00247. eCollection 2016.
10
Towards a fourth spatial dimension of brain activity.
Cogn Neurodyn. 2016 Jun;10(3):189-99. doi: 10.1007/s11571-016-9379-z. Epub 2016 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验