Suppr超能文献

弗兰克氏菌属菌株EAN1pec对Pb2+的耐受性涉及表面结合。

Pb2+ tolerance by Frankia sp. strain EAN1pec involves surface-binding.

作者信息

Furnholm Teal, Rehan Medhat, Wishart Jessica, Tisa Louis S

机构信息

Department of Cellular, Molecular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.

Department of Genetics, College of Agriculture, Kafrelsheikh University, Egypt.

出版信息

Microbiology (Reading). 2017 Apr;163(4):472-487. doi: 10.1099/mic.0.000439. Epub 2017 Apr 26.

Abstract

Several Frankia strains have been shown to be lead-resistant. The mechanism of lead resistance was investigated for Frankia sp. strain EAN1pec. Analysis of the cultures by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and Fourier transforming infrared spectroscopy (FTIR) demonstrated that Frankia sp. strain EAN1pec undergoes surface modifications and binds high quantities of Pb+2. Both labelled and unlabelled shotgun proteomics approaches were used to determine changes in Frankia sp. strain EAN1pec protein expression in response to lead and zinc. Pb2+ specifically induced changes in exopolysaccharides, the stringent response, and the phosphate (pho) regulon. Two metal transporters (a Cu2+-ATPase and cation diffusion facilitator), as well as several hypothetical transporters, were also upregulated and may be involved in metal export. The exported Pb2+ may be precipitated at the cell surface by an upregulated polyphosphate kinase, undecaprenyl diphosphate synthase and inorganic diphosphatase. A variety of metal chaperones for ensuring correct cofactor placement were also upregulated with both Pb+2 and Zn+2 stress. Thus, this Pb+2 resistance mechanism is similar to other characterized systems. The cumulative interplay of these many mechanisms may explain the extraordinary resilience of Frankia sp. strain EAN1pec to Pb+2. A potential transcription factor (DUF156) binding site was identified in association with several proteins identified as upregulated with heavy metals. This site was also discovered, for the first time, in thousands of other organisms across two kingdoms.

摘要

几种弗兰克氏菌菌株已被证明具有抗铅性。对弗兰克氏菌属菌株EAN1pec的抗铅机制进行了研究。通过扫描电子显微镜(SEM)、能量色散X射线光谱(EDAX)和傅里叶变换红外光谱(FTIR)对培养物进行分析,结果表明弗兰克氏菌属菌株EAN1pec会发生表面修饰并结合大量的Pb²⁺。使用标记和未标记的鸟枪法蛋白质组学方法来确定弗兰克氏菌属菌株EAN1pec中响应铅和锌的蛋白质表达变化。Pb²⁺特异性地诱导了胞外多糖、严谨反应和磷酸盐(pho)调控子的变化。两种金属转运蛋白(一种Cu²⁺ - ATP酶和阳离子扩散促进因子)以及几种假定的转运蛋白也被上调,可能参与金属输出。输出的Pb²⁺可能会被上调的多磷酸激酶、十一异戊烯二磷酸合酶和无机焦磷酸酶沉淀在细胞表面。在Pb²⁺和Zn²⁺胁迫下,多种用于确保正确辅因子定位的金属伴侣蛋白也被上调。因此,这种Pb²⁺抗性机制与其他已表征的系统相似。这些众多机制的累积相互作用可能解释了弗兰克氏菌属菌株EAN1pec对Pb²⁺的非凡耐受性。在与几种被鉴定为因重金属而上调的蛋白质相关联的区域中,鉴定出了一个潜在的转录因子(DUF156)结合位点。这个位点也是首次在两个界的数千种其他生物中被发现。

相似文献

1
Pb2+ tolerance by Frankia sp. strain EAN1pec involves surface-binding.
Microbiology (Reading). 2017 Apr;163(4):472-487. doi: 10.1099/mic.0.000439. Epub 2017 Apr 26.
2
Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.
Appl Microbiol Biotechnol. 2014 Sep;98(18):8005-15. doi: 10.1007/s00253-014-5849-6. Epub 2014 Jun 6.
3
The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia.
BMC Genomics. 2014 Dec 12;15:1092. doi: 10.1186/1471-2164-15-1092.
4
Detoxification and reduction of selenite to elemental red selenium by Frankia.
Antonie Van Leeuwenhoek. 2019 Jan;112(1):127-139. doi: 10.1007/s10482-018-1196-4. Epub 2018 Nov 12.
5
Bioremediation of noxious metals from e-waste printed circuit boards by Frankia.
Microbiol Res. 2021 Apr;245:126707. doi: 10.1016/j.micres.2021.126707. Epub 2021 Jan 19.
6
Interaction of Pb(II) and biofilm associated extracellular polymeric substances of a marine bacterium Pseudomonas pseudoalcaligenes NP103.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 Feb 15;173:655-665. doi: 10.1016/j.saa.2016.10.009. Epub 2016 Oct 17.
7
Calcium transport by Frankia sp. strain EAN1pec.
Curr Microbiol. 1998 Jul;37(1):12-6. doi: 10.1007/s002849900329.
8
Isolation and molecular characterization of Frankia strains resistant to some heavy metals.
J Basic Microbiol. 2018 Sep;58(9):720-729. doi: 10.1002/jobm.201800122. Epub 2018 Jul 1.

引用本文的文献

1
Bioremediation of Heavy Metals by Rhizobacteria.
Appl Biochem Biotechnol. 2023 Aug;195(8):4689-4711. doi: 10.1007/s12010-022-04177-z. Epub 2022 Oct 26.
3
Genomic Insights Into Plant-Growth-Promoting Potentialities of the Genus .
Front Microbiol. 2019 Jul 4;10:1457. doi: 10.3389/fmicb.2019.01457. eCollection 2019.

本文引用的文献

1
Strain specificity in the Myricaceae-Frankia symbiosis is correlated to plant root phenolics.
Funct Plant Biol. 2011 Sep;38(9):682-689. doi: 10.1071/FP11144.
2
The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia.
BMC Genomics. 2014 Dec 12;15:1092. doi: 10.1186/1471-2164-15-1092.
3
Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.
Appl Microbiol Biotechnol. 2014 Sep;98(18):8005-15. doi: 10.1007/s00253-014-5849-6. Epub 2014 Jun 6.
4
What stories can the Frankia genomes start to tell us?
J Biosci. 2013 Nov;38(4):719-26. doi: 10.1007/s12038-013-9364-1.
5
Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring.
Ecotoxicol Environ Saf. 2013 Dec;98:1-7. doi: 10.1016/j.ecoenv.2013.09.039. Epub 2013 Oct 18.
7
Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain CcI3 under nitrogen-fixing conditions.
Appl Microbiol Biotechnol. 2013 Dec;97(24):10499-509. doi: 10.1007/s00253-013-5277-z. Epub 2013 Oct 6.
9
Conservation of thiol-oxidative stress responses regulated by SigR orthologues in actinomycetes.
Mol Microbiol. 2012 Jul;85(2):326-44. doi: 10.1111/j.1365-2958.2012.08115.x. Epub 2012 Jun 14.
10
Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum.
Infect Immun. 2012 Apr;80(4):1381-9. doi: 10.1128/IAI.06370-11. Epub 2012 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验