Waldschmidt Lara, Junkereit Vera, Bähring Robert
Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
PLoS One. 2017 Jan 31;12(1):e0171213. doi: 10.1371/journal.pone.0171213. eCollection 2017.
The transient outward current (Ito) in cardiomyocytes is largely mediated by Kv4 channels associated with Kv Channel Interacting Protein 2 (KChIP2). A knockout model has documented the critical role of KChIP2 in Ito expression. The present study was conducted to characterize in both sexes the dependence of Ito properties, including current magnitude, inactivation kinetics, recovery from inactivation and voltage dependence of inactivation, on the number of functional KChIP2 alleles. For this purpose we performed whole-cell patch-clamp experiments on isolated left ventricular cardiomyocytes from male and female mice which had different KChIP2 genotypes; i.e., wild-type (KChIP2+/+), heterozygous knockout (KChIP2+/-) or complete knockout of KChIP2 (KChIP2-/-). We found in both sexes a KChIP2 gene dosage effect (i.e., a proportionality between number of alleles and phenotype) on Ito magnitude, however, concerning other Ito properties, KChIP2+/- resembled KChIP2+/+. Only in the total absence of KChIP2 (KChIP2-/-) we observed a slowing of Ito kinetics, a slowing of recovery from inactivation and a negative shift of a portion of the voltage dependence of inactivation. In a minor fraction of KChIP2-/- myocytes Ito was completely lost. The distinct KChIP2 genotype dependences of Ito magnitude and inactivation kinetics, respectively, seen in cardiomyocytes were reproduced with two-electrode voltage-clamp experiments on Xenopus oocytes expressing Kv4.2 and different amounts of KChIP2. Our results corroborate the critical role of KChIP2 in controlling Ito properties. They demonstrate that the Kv4.2/KChIP2 interaction in cardiomyocytes is highly dynamic, with a clear KChIP2 gene dosage effect on Kv4 channel surface expression but not on inactivation gating.
心肌细胞中的瞬时外向电流(Ito)在很大程度上由与钾通道相互作用蛋白2(KChIP2)相关的Kv4通道介导。一种基因敲除模型已经证明了KChIP2在Ito表达中的关键作用。本研究旨在确定在两性中,Ito特性(包括电流幅度、失活动力学、失活后恢复以及失活的电压依赖性)对功能性KChIP2等位基因数量的依赖性。为此,我们对来自具有不同KChIP2基因型的雄性和雌性小鼠的离体左心室心肌细胞进行了全细胞膜片钳实验;即野生型(KChIP2+/+)、杂合敲除(KChIP2+/-)或KChIP2完全敲除(KChIP2-/-)。我们发现,在两性中,KChIP2基因剂量效应(即等位基因数量与表型之间的比例关系)对Ito幅度有影响,然而,关于其他Ito特性,KChIP2+/-与KChIP2+/+相似。仅在完全不存在KChIP2(KChIP2-/-)时,我们观察到Ito动力学减慢、失活后恢复减慢以及失活电压依赖性的一部分出现负向偏移。在一小部分KChIP2-/-心肌细胞中,Ito完全丧失。在表达Kv4.2和不同量KChIP2 的非洲爪蟾卵母细胞上进行的双电极电压钳实验重现了心肌细胞中分别观察到的Ito幅度和失活动力学对KChIP2基因型的不同依赖性。我们的结果证实了KChIP2在控制Ito特性中的关键作用。它们表明,心肌细胞中Kv4.2/KChIP2相互作用是高度动态的,KChIP2基因剂量对Kv4通道表面表达有明显影响,但对失活门控没有影响。