Suppr超能文献

在同步糖化发酵过程中,通过表达突变型纤维二糖转运蛋白的工程酿酒酵母提高乙醇产量。

Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation.

作者信息

Lee Won-Heong, Jin Yong-Su

机构信息

Department of Food Science and Human Nutrition, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, South Korea.

Department of Food Science and Human Nutrition, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.

出版信息

J Biotechnol. 2017 Mar 10;245:1-8. doi: 10.1016/j.jbiotec.2017.01.018. Epub 2017 Jan 28.

Abstract

Although simultaneous saccharification and fermentation (SSF) of cellulosic biomass can offer efficient hydrolysis of cellulose through alleviating feed-back inhibition of cellulases by glucose, supplementation of β-glucosidase is necessary because most fermenting microorganisms cannot utilize cellobiose. Previously, we observed that SSF of cellulose by an engineered Saccharomyces cerevisiae expressing a cellobiose transporter (CDT-1) and an intracellular β-glucosidase (GH1-1) without β-glucosidase could not be performed as efficiently as the traditional SSF with extracellular β-glucosidase. However, we improved the ethanol production from SSF of cellulose by employing a further engineered S. cerevisiae expressing a mutant cellobiose transporter [CDT-1 (F213L) exhibiting higher V than CDT-1] and GH1-1 in this study. Furthermore, limitation of cellobiose formation by reducing the amounts of cellulases mixture in SSF could lead the further engineered strain to produce ethanol considerably better than the parental strain with β-glucosidase. Probably, better production of ethanol by the further engineered strain seemed to be due to a higher affinity to cellobiose, which might be attributed to not only 2-times lower Monod constant (K) for cellobiose than K of the parental strain for glucose but also 5-times lower K than Michaelis-Menten constant (K) of the extracellular β-glucosidase for glucose. Our results suggest that modification of the cellobiose transporter in the engineered yeast to transport lower level of cellobiose enables a more efficient SSF for producing ethanol from cellulose.

摘要

尽管纤维素生物质的同步糖化发酵(SSF)可通过减轻葡萄糖对纤维素酶的反馈抑制来实现纤维素的高效水解,但由于大多数发酵微生物无法利用纤维二糖,因此补充β-葡萄糖苷酶是必要的。此前,我们观察到,在没有β-葡萄糖苷酶的情况下,表达纤维二糖转运蛋白(CDT-1)和细胞内β-葡萄糖苷酶(GH1-1)的工程酿酒酵母对纤维素进行SSF时,其效率不如使用细胞外β-葡萄糖苷酶的传统SSF。然而,在本研究中,我们通过使用进一步工程改造的酿酒酵母来提高纤维素SSF的乙醇产量,该酵母表达一种突变的纤维二糖转运蛋白[CDT-1(F213L),其V值高于CDT-1]和GH1-1。此外,通过减少SSF中纤维素酶混合物的量来限制纤维二糖的形成,可使进一步工程改造的菌株比具有β-葡萄糖苷酶的亲本菌株产生更多的乙醇。可能,进一步工程改造的菌株乙醇产量更高似乎是由于对纤维二糖具有更高的亲和力,这可能不仅归因于其对纤维二糖的莫诺德常数(K)比亲本菌株对葡萄糖的K值低2倍,还归因于其K值比细胞外β-葡萄糖苷酶对葡萄糖的米氏常数(K)低5倍。我们的结果表明,对工程酵母中的纤维二糖转运蛋白进行改造,使其转运较低水平的纤维二糖,能够实现更高效的SSF以从纤维素生产乙醇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验