Kleinschmidt Ann-Kathrin, Barzen Lars, Strassner Johannes, Doering Christoph, Fouckhardt Henning, Bock Wolfgang, Wahl Michael, Kopnarski Michael
Research Group Integrated Optoelectronics and Microoptics (IOE), Physics Department, University of Kaiserslautern, PO Box 3049, D-67653 Kaiserslautern, Germany.
Institut für Oberflächen- und Schichtanalytik (IFOS) GmbH, Trippstadter Str. 120, D-67663 Kaiserslautern, Germany.
Beilstein J Nanotechnol. 2016 Nov 21;7:1783-1793. doi: 10.3762/bjnano.7.171. eCollection 2016.
Reflectance anisotropy spectroscopy (RAS) equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE)) of monocrystalline multilayered III-V semiconductors in situ. The related accuracy of etch depth control is better than 16 nm. Comparison with results of secondary ion mass spectrometry (SIMS) reveals a deviation of only about 4 nm in optimal cases. To illustrate the applicability of the reported method in every day settings for the first time the highly etch depth sensitive lithographic process to form a film lens on the waveguide ridge of a broad area laser (BAL) is presented. This example elucidates the benefits of the method in semiconductor device fabrication and also suggests how to fulfill design requirements for the sample in order to make RAS control possible.
反射率各向异性光谱(RAS)设备用于原位监测单晶多层III-V族半导体的干法蚀刻工艺(此处具体为反应离子蚀刻(RIE))。蚀刻深度控制的相关精度优于16纳米。与二次离子质谱(SIMS)结果的比较表明,在最佳情况下偏差仅约4纳米。首次展示了所报道方法在日常环境中的适用性,介绍了在大面积激光器(BAL)的波导脊上形成薄膜透镜的对蚀刻深度高度敏感的光刻工艺。该示例阐明了该方法在半导体器件制造中的优势,还提出了如何满足样品的设计要求以使RAS控制成为可能。