Suppr超能文献

基于非周期间歇控制的具有混合时变延迟和反应扩散项的广义神经网络指数同步

Exponential synchronization of generalized neural networks with mixed time-varying delays and reaction-diffusion terms via aperiodically intermittent control.

作者信息

Gan Qintao

机构信息

Department of Basic Science, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, People's Republic of China.

出版信息

Chaos. 2017 Jan;27(1):013113. doi: 10.1063/1.4973976.

Abstract

In this paper, the exponential synchronization problem of generalized reaction-diffusion neural networks with mixed time-varying delays is investigated concerning Dirichlet boundary conditions in terms of p-norm. Under the framework of the Lyapunov stability method, stochastic theory, and mathematical analysis, some novel synchronization criteria are derived, and an aperiodically intermittent control strategy is proposed simultaneously. Moreover, the effects of diffusion coefficients, diffusion space, and stochastic perturbations on the synchronization process are explicitly expressed under the obtained conditions. Finally, some numerical simulations are performed to illustrate the feasibility of the proposed control strategy and show different synchronization dynamics under a periodically/aperiodically intermittent control.

摘要

本文针对具有混合时变延迟的广义反应扩散神经网络,在狄利克雷边界条件下,基于p范数研究其指数同步问题。在李雅普诺夫稳定性方法、随机理论和数学分析的框架下,推导了一些新颖的同步准则,并同时提出了一种非周期间歇控制策略。此外,在所获得的条件下,明确表达了扩散系数、扩散空间和随机扰动对同步过程的影响。最后,进行了一些数值模拟,以说明所提出控制策略的可行性,并展示在周期/非周期间歇控制下不同的同步动态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验