Suppr超能文献

线性响应理论中的自然激发轨道:含时密度泛函理论、含时Hartree-Fock理论和含时自然轨道泛函理论。

Natural excitation orbitals from linear response theories: Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory.

作者信息

van Meer R, Gritsenko O V, Baerends E J

机构信息

Section Theoretical Chemistry, VU University, Amsterdam, The Netherlands.

出版信息

J Chem Phys. 2017 Jan 28;146(4):044119. doi: 10.1063/1.4974327.

Abstract

Straightforward interpretation of excitations is possible if they can be described as simple single orbital-to-orbital (or double, etc.) transitions. In linear response time-dependent density functional theory (LR-TDDFT), the (ground state) Kohn-Sham orbitals prove to be such an orbital basis. In contrast, in a basis of natural orbitals (NOs) or Hartree-Fock orbitals, excitations often employ many orbitals and are accordingly hard to characterize. We demonstrate that it is possible in these cases to transform to natural excitation orbitals (NEOs) which resemble very closely the KS orbitals and afford the same simple description of excitations. The desired transformation has been obtained by diagonalization of a submatrix in the equations of linear response time-dependent 1-particle reduced density matrix functional theory (LR-TDDMFT) for the NO transformation, and that of a submatrix in the linear response time-dependent Hartree-Fock (LR-TDHF) equations for the transformation of HF orbitals. The corresponding submatrix is already diagonal in the KS basis in the LR-TDDFT equations. While the orbital shapes of the NEOs afford the characterization of the excitations as (mostly) simple orbital-to-orbital transitions, the orbital energies provide a fair estimate of excitation energies.

摘要

如果激发能被描述为简单的单轨道到轨道(或双轨道等)跃迁,那么对其进行直接解释是可行的。在含时密度泛函理论的线性响应(LR-TDDFT)中,(基态)Kohn-Sham轨道被证明是这样一种轨道基。相比之下,在自然轨道(NO)或Hartree-Fock轨道基中,激发通常涉及多个轨道,因此难以进行表征。我们证明,在这些情况下,可以转换到与Kohn-Sham轨道非常相似的自然激发轨道(NEO),并对激发提供同样简单的描述。对于NO变换,通过对含时单粒子约化密度矩阵泛函理论的线性响应(LR-TDDMFT)方程中的一个子矩阵进行对角化,以及对于HF轨道变换,通过对含时Hartree-Fock(LR-TDHF)方程中的一个子矩阵进行对角化,得到了所需的变换。在LR-TDDFT方程中,相应的子矩阵在Kohn-Sham基中已经是对角的。虽然NEO的轨道形状使得激发可以(大多)被表征为简单的轨道到轨道跃迁,但轨道能量能对激发能量提供合理的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验