Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA.
J Chem Phys. 2011 Jan 14;134(2):024102. doi: 10.1063/1.3526297.
The implementation of fewest-switches surface-hopping (FSSH) within time-dependent Kohn-Sham (TDKS) theory [Phys. Rev. Lett. 95, 163001 (2005)] has allowed us to study successfully excited state dynamics involving many electronic states in a variety of molecular and nanoscale systems, including chromophore-semiconductor interfaces, semiconductor and metallic quantum dots, carbon nanotubes and graphene nanoribbons, etc. At the same time, a concern has been raised that the KS orbital basis used in the calculation provides only approximate potential energy surfaces [J. Chem. Phys. 125, 014110 (2006)]. While this approximation does exist in our method, we show here that FSSH-TDKS is a viable option for computationally efficient calculations in large systems with straightforward excited state dynamics. We demonstrate that the potential energy surfaces and nonadiabatic transition probabilities obtained within the TDKS and linear response (LR) time-dependent density functional theories (TDDFT) agree semiquantitatively for three different systems, including an organic chromophore ligating a transition metal, a quantum dot, and a small molecule. Further, in the latter case the FSSH-TDKS procedure generates results that are in line with FSSH implemented within LR-TDDFT. The FSSH-TDKS approach is successful for several reasons. First, single-particle KS excitations often give a good representation of LR excitations. In this regard, DFT compares favorably with the Hartree-Fock theory, for which LR excitations are typically combinations of multiple single-particle excitations. Second, the majority of the FSSH-TDKS applications have been performed with large systems involving simple excitations types. Excitation of a single electron in such systems creates a relatively small perturbation to the total electron density summed over all electrons, and it has a small effect on the nuclear dynamics compared, for instance, with thermal nuclear fluctuations. In such cases an additional, classical-path approximation can be made. Third, typical observables measured in time-resolved experiments involve averaging over many initial conditions. Such averaging tends to cancel out random errors that may be encountered in individual simulated trajectories. Finally, if the flow of energy between electronic and nuclear subsystems is insignificant, the ad hoc FSSH procedure is not required, and a straightforward mean-field, Ehrenfest approach is sufficient. Then, the KS representation provides rigorously a convenient and efficient basis for numerically solving the TDDFT equations of motion.
在含时 Kohn-Sham(TDKS)理论[Phys. Rev. Lett. 95, 163001 (2005)]中实现最少跃迁表面跳跃(FSSH),使我们能够成功研究涉及多种分子和纳米系统中许多电子态的激发态动力学,包括生色团-半导体界面、半导体和金属量子点、碳纳米管和石墨烯纳米带等。同时,人们担心计算中使用的 KS 轨道基仅提供近似的势能表面[J. Chem. Phys. 125, 014110 (2006)]。虽然我们的方法确实存在这种近似,但我们在此表明,对于具有简单激发态动力学的大系统,FSSH-TDKS 是一种可行的计算效率选择。我们证明了在三个不同的系统中,包括一个有机生色团连接过渡金属、一个量子点和一个小分子,在 TDKS 和线性响应(LR)时变密度泛函理论(TDDFT)内获得的势能表面和非绝热跃迁概率在半定量上是一致的。此外,在后一种情况下,FSSH-TDKS 过程生成的结果与 LR-TDDFT 内实现的 FSSH 一致。FSSH-TDKS 方法之所以成功,有几个原因。首先,单粒子 KS 激发通常可以很好地表示 LR 激发。在这方面,DFT 与 Hartree-Fock 理论相比具有优势,对于后者,LR 激发通常是多个单粒子激发的组合。其次,FSSH-TDKS 的大多数应用都是在涉及简单激发类型的大型系统中进行的。在这样的系统中,单个电子的激发会对所有电子的总电子密度产生相对较小的扰动,并且与例如热核涨落相比,它对核动力学的影响较小。在这种情况下,可以进行附加的经典路径近似。第三,时间分辨实验中测量的典型观测值涉及对许多初始条件进行平均。这种平均可以抵消在单个模拟轨迹中可能遇到的随机误差。最后,如果电子和核子系统之间的能量流动不重要,则不需要专门的 FSSH 过程,并且直接的平均场、 Ehrenfest 方法就足够了。然后,KS 表示为数值求解 TDDFT 运动方程提供了严格的便利和高效的基础。