Suppr超能文献

外显子组测序涵盖了在靶向新一代测序面板上鉴定出的超过98%的突变。

Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels.

作者信息

LaDuca Holly, Farwell Kelly D, Vuong Huy, Lu Hsiao-Mei, Mu Wenbo, Shahmirzadi Layla, Tang Sha, Chen Jefferey, Bhide Shruti, Chao Elizabeth C

机构信息

Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, California, United States of America.

Department of Pediatrics, Division of Genetics and Genomic Medicine, University of California Irvine, Irvine, California, United States of America.

出版信息

PLoS One. 2017 Feb 2;12(2):e0170843. doi: 10.1371/journal.pone.0170843. eCollection 2017.

Abstract

BACKGROUND

With the expanded availability of next generation sequencing (NGS)-based clinical genetic tests, clinicians seeking to test patients with Mendelian diseases must weigh the superior coverage of targeted gene panels with the greater number of genes included in whole exome sequencing (WES) when considering their first-tier testing approach. Here, we use an in silico analysis to predict the analytic sensitivity of WES using pathogenic variants identified on targeted NGS panels as a reference.

METHODS

Corresponding nucleotide positions for 1533 different alterations classified as pathogenic or likely pathogenic identified on targeted NGS multi-gene panel tests in our laboratory were interrogated in data from 100 randomly-selected clinical WES samples to quantify the sequence coverage at each position. Pathogenic variants represented 91 genes implicated in hereditary cancer, X-linked intellectual disability, primary ciliary dyskinesia, Marfan syndrome/aortic aneurysms, cardiomyopathies and arrhythmias.

RESULTS

When assessing coverage among 100 individual WES samples for each pathogenic variant (153,300 individual assessments), 99.7% (n = 152,798) would likely have been detected on WES. All pathogenic variants had at least some coverage on exome sequencing, with a total of 97.3% (n = 1491) detectable across all 100 individuals. For the remaining 42 pathogenic variants, the number of WES samples with adequate coverage ranged from 35 to 99. Factors such as location in GC-rich, repetitive, or homologous regions likely explain why some of these alterations were not detected across all samples. To validate study findings, a similar analysis was performed against coverage data from 60,706 exomes available through the Exome Aggregation Consortium (ExAC). Results from this validation confirmed that 98.6% (91,743,296/93,062,298) of pathogenic variants demonstrated adequate depth for detection.

CONCLUSIONS

Results from this in silico analysis suggest that exome sequencing may achieve a diagnostic yield similar to panel-based testing for Mendelian diseases.

摘要

背景

随着基于新一代测序(NGS)的临床基因检测的普及,寻求对孟德尔疾病患者进行检测的临床医生在考虑其一线检测方法时,必须权衡靶向基因panel的卓越覆盖范围与全外显子组测序(WES)中包含的更多基因数量。在此,我们使用计算机模拟分析,以在靶向NGS panel上鉴定出的致病变异作为参考,预测WES的分析灵敏度。

方法

在我们实验室的靶向NGS多基因panel检测中鉴定为致病或可能致病的1533种不同改变的相应核苷酸位置,在100个随机选择的临床WES样本的数据中进行查询,以量化每个位置的序列覆盖度。致病变异代表涉及遗传性癌症、X连锁智力障碍、原发性纤毛运动障碍、马凡综合征/主动脉瘤、心肌病和心律失常的91个基因。

结果

在评估每个致病变异(153,300次个体评估)在100个个体WES样本中的覆盖度时,99.7%(n = 152,798)可能在WES上被检测到。所有致病变异在外显子组测序上至少有一定覆盖度,在所有100个个体中共有97.3%(n = 1491)可被检测到。对于其余42个致病变异,具有足够覆盖度的WES样本数量范围为35至99。诸如位于富含GC、重复或同源区域等因素可能解释了为什么其中一些改变并非在所有样本中都能检测到。为了验证研究结果,针对通过外显子组聚合联盟(ExAC)获得的60,706个外显子组的覆盖度数据进行了类似分析。该验证结果证实,98.6%(91,743,296/93,062,298)的致病变异显示出足够的深度以供检测。

结论

该计算机模拟分析结果表明,外显子组测序对于孟德尔疾病可能实现与基于panel检测相似的诊断率。

相似文献

1
Exome sequencing covers >98% of mutations identified on targeted next generation sequencing panels.
PLoS One. 2017 Feb 2;12(2):e0170843. doi: 10.1371/journal.pone.0170843. eCollection 2017.
2
Targeted 46-gene and clinical exome sequencing for mutations causing cardiomyopathies.
Mol Cell Probes. 2015 Oct;29(5):308-14. doi: 10.1016/j.mcp.2015.05.004. Epub 2015 May 12.
3
The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes.
Hum Genet. 2017 Aug;136(8):921-939. doi: 10.1007/s00439-017-1821-8. Epub 2017 Jun 9.
5
Next-generation diagnostics: gene panel, exome, or whole genome?
Hum Mutat. 2015 Jun;36(6):648-55. doi: 10.1002/humu.22783. Epub 2015 Apr 17.
6
Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases.
Genome Biol. 2015 Jun 26;16(1):134. doi: 10.1186/s13059-015-0693-2.
7
Clinical validation of targeted next-generation sequencing for inherited disorders.
Arch Pathol Lab Med. 2015 Feb;139(2):204-10. doi: 10.5858/arpa.2013-0625-OA.
8
Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5473-8. doi: 10.1073/pnas.1418631112. Epub 2015 Mar 31.
9
Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders.
J Hum Genet. 2012 Oct;57(10):621-32. doi: 10.1038/jhg.2012.91. Epub 2012 Jul 26.
10
Development and Validation of Clinical Whole-Exome and Whole-Genome Sequencing for Detection of Germline Variants in Inherited Disease.
Arch Pathol Lab Med. 2017 Jun;141(6):798-805. doi: 10.5858/arpa.2016-0622-RA. Epub 2017 Mar 31.

引用本文的文献

1
Deep learning-driven multi-omics analysis: enhancing cancer diagnostics and therapeutics.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf440.
2
Genetic diagnosis and prenatal diagnosis of patients with cystic kidney disease in Southwest China.
BMC Nephrol. 2025 Jul 17;26(1):399. doi: 10.1186/s12882-025-04346-2.
3
Clinical and analytical validation of a combined RNA and DNA exome assay across a large tumor cohort.
Commun Med (Lond). 2025 Jun 16;5(1):236. doi: 10.1038/s43856-025-00934-3.
6
Approaches to diagnosis for individuals with a suspected inherited white matter disorder.
Handb Clin Neurol. 2024;204:21-35. doi: 10.1016/B978-0-323-99209-1.00009-0.
7
Genomic technologies and the diagnosis of 46, XY differences of sex development.
Andrology. 2025 Jul;13(5):1025-1043. doi: 10.1111/andr.13708. Epub 2024 Jul 31.
8
TTN novel splice variant in familial dilated cardiomyopathy and splice variants review: a case report.
Front Cardiovasc Med. 2024 Jun 13;11:1387063. doi: 10.3389/fcvm.2024.1387063. eCollection 2024.
9
Current genetic diagnostics in inborn errors of immunity.
Front Pediatr. 2024 Apr 10;12:1279112. doi: 10.3389/fped.2024.1279112. eCollection 2024.

本文引用的文献

1
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
2
Achieving high-sensitivity for clinical applications using augmented exome sequencing.
Genome Med. 2015 Jul 16;7(1):71. doi: 10.1186/s13073-015-0197-4. eCollection 2015.
5
Clinical exome performance for reporting secondary genetic findings.
Clin Chem. 2015 Jan;61(1):213-20. doi: 10.1373/clinchem.2014.231456. Epub 2014 Nov 20.
7
A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic yield.
Ann Neurol. 2015 Feb;77(2):206-14. doi: 10.1002/ana.24303. Epub 2014 Dec 17.
9
Recent advances in primary ciliary dyskinesia genetics.
J Med Genet. 2015 Jan;52(1):1-9. doi: 10.1136/jmedgenet-2014-102755. Epub 2014 Oct 28.
10
Clinical exome sequencing for genetic identification of rare Mendelian disorders.
JAMA. 2014 Nov 12;312(18):1880-7. doi: 10.1001/jama.2014.14604.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验