Hillary Brendan, Sudarsanam Putla, Amin Mohamad Hassan, Bhargava Suresh K
Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University , Melbourne, Victoria 3001, Australia.
Langmuir. 2017 Feb 28;33(8):1743-1750. doi: 10.1021/acs.langmuir.6b03445. Epub 2017 Feb 13.
Understanding the role of nanointerface structures in supported bimetallic nanoparticles is vital for the rational design of novel high-performance catalysts. This study reports the synthesis, characterization, and the catalytic application of Co-Mn oxide nanoparticles supported on CeO nanocubes with the specific aim of investigating the effect of nanointerfaces in tuning structure-activity properties. High-resolution transmission electron microscopy analysis reveals the formation of different types of Co-Mn nanoalloys with a range of 6 ± 0.5 to 14 ± 0.5 nm on the surface of CeO nanocubes, which are in the range of 15 ± 1.5 to 25 ± 1.5 nm. High concentration of Ce species are found in Co-Mn/CeO (23.34%) compared with that in Mn/CeO (21.41%), Co/CeO (15.63%), and CeO (11.06%), as evidenced by X-ray photoelectron spectroscopy (XPS) analysis. Nanoscale electron energy loss spectroscopy analysis in combination with XPS studies shows the transformation of Co to Co and simultaneously Mn to Mn. The Co-Mn/CeO catalyst exhibits the best performance in solvent-free oxidation of benzylamine (89.7% benzylamine conversion) compared with the Co/CeO (29.2% benzylamine conversion) and Mn/CeO (82.6% benzylamine conversion) catalysts for 3 h at 120 °C using air as the oxidant. Irrespective of the catalysts employed, a high selectivity toward the dibenzylimine product (97-98%) was found compared with the benzonitrile product (2-3%). The interplay of redox chemistry of Mn and Co at the nanointerface sites between Co-Mn nanoparticles and CeO nanocubes as well as the abundant structural defects in cerium oxide plays a key role in the efficiency of the Co-Mn/CeO catalyst for the aerobic oxidation of benzylamine.
了解纳米界面结构在负载型双金属纳米颗粒中的作用对于合理设计新型高性能催化剂至关重要。本研究报道了负载在CeO纳米立方体上的Co-Mn氧化物纳米颗粒的合成、表征及催化应用,其具体目的是研究纳米界面在调节结构-活性性质方面的作用。高分辨率透射电子显微镜分析表明,在尺寸为15±1.5至25±1.5 nm的CeO纳米立方体表面形成了尺寸范围为6±0.5至14±0.5 nm的不同类型的Co-Mn纳米合金。X射线光电子能谱(XPS)分析表明,与Mn/CeO(21.41%)、Co/CeO(15.63%)和CeO(11.06%)相比,Co-Mn/CeO中Ce物种的浓度较高(23.34%)。结合XPS研究的纳米级电子能量损失谱分析表明Co转变为Co,同时Mn转变为Mn。在120℃下以空气为氧化剂反应3小时,与Co/CeO(苄胺转化率29.2%)和Mn/CeO(苄胺转化率82.6%)催化剂相比,Co-Mn/CeO催化剂在苄胺的无溶剂氧化反应中表现出最佳性能(苄胺转化率89.7%)。无论使用何种催化剂,与苄腈产物(2-3%)相比,对二苄基亚胺产物的选择性都很高(97-98%)。Co-Mn纳米颗粒与CeO纳米立方体之间纳米界面处Mn和Co的氧化还原化学相互作用以及氧化铈中丰富的结构缺陷在Co-Mn/CeO催化剂苄胺需氧氧化反应的效率中起关键作用。