Kaltenmeier Christof T, Vollmer Laura L, Vernetti Lawrence A, Caprio Lindsay, Davis Keanu, Korotchenko Vasiliy N, Day Billy W, Tsang Michael, Hulkower Keren I, Lotze Michael T, Vogt Andreas
Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.).
Departments of Surgery, Immunology and Biochemistry (C.T.K., M.T.L.), Drug Discovery Institute (L.L.V., L.A.V., L.C., K.D., M.T.L., A.V.), Department of Computational and Systems Biology (L.A.V., A.V.), Department of Pharmaceutical Sciences (V.N.K., B.W.D.), and Department of Developmental Biology (M.T.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Platypus Technologies, LLC, Madison, Wisconsin (K.I.H.)
J Pharmacol Exp Ther. 2017 Apr;361(1):39-50. doi: 10.1124/jpet.116.239756. Epub 2017 Feb 2.
Dual specificity mitogen-activated protein kinase (MAPK) phosphatases [dual specificity phosphatase/MAP kinase phosphatase (DUSP-MKP)] have been hypothesized to maintain cancer cell survival by buffering excessive MAPK signaling caused by upstream activating oncogenic products. A large and diverse body of literature suggests that genetic depletion of DUSP-MKPs can reduce tumorigenicity, suggesting that hyperactivating MAPK signaling by DUSP-MKP inhibitors could be a novel strategy to selectively affect the transformed phenotype. Through in vivo structure-activity relationship studies in transgenic zebrafish we recently identified a hyperactivator of fibroblast growth factor signaling [(E)-2-benzylidene-5-bromo-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI-215)] that is devoid of developmental toxicity and restores defective MAPK activity caused by overexpression of DUSP1 and DUSP6 in mammalian cells. Here, we hypothesized that BCI-215 could selectively affect survival of transformed cells. In MDA-MB-231 human breast cancer cells, BCI-215 inhibited cell motility, caused apoptosis but not primary necrosis, and sensitized cells to lymphokine-activated killer cell activity. Mechanistically, BCI-215 induced rapid and sustained phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) in the absence of reactive oxygen species, and its toxicity was partially rescued by inhibition of p38 but not JNK or ERK. BCI-215 also hyperactivated MKK4/SEK1, suggesting activation of stress responses. Kinase phosphorylation profiling documented BCI-215 selectively activated MAPKs and their downstream substrates, but not receptor tyrosine kinases, SRC family kinases, AKT, mTOR, or DNA damage pathways. Our findings support the hypothesis that BCI-215 causes selective cancer cell cytotoxicity in part through non-redox-mediated activation of MAPK signaling, and the findings also identify an intersection with immune cell killing that is worthy of further exploration.
双特异性丝裂原活化蛋白激酶(MAPK)磷酸酶[双特异性磷酸酶/MAP激酶磷酸酶(DUSP-MKP)]被认为可通过缓冲上游致癌激活产物引起的过度MAPK信号传导来维持癌细胞的存活。大量且多样的文献表明,DUSP-MKPs的基因缺失可降低肿瘤发生能力,这表明通过DUSP-MKP抑制剂过度激活MAPK信号传导可能是一种选择性影响转化表型的新策略。通过在转基因斑马鱼中进行的体内构效关系研究,我们最近鉴定出一种成纤维细胞生长因子信号的超激活剂[(E)-2-亚苄基-5-溴-3-(环己基氨基)-2,3-二氢-1H-茚-1-酮(BCI-215)],该物质无发育毒性,并能恢复哺乳动物细胞中因DUSP1和DUSP6过表达而导致的缺陷性MAPK活性。在此,我们假设BCI-215可选择性影响转化细胞的存活。在MDA-MB-231人乳腺癌细胞中,BCI-215抑制细胞运动,诱导细胞凋亡但不引起原发性坏死,并使细胞对淋巴因子激活的杀伤细胞活性敏感。从机制上讲,BCI-215在不存在活性氧的情况下诱导细胞外信号调节激酶(ERK)、p38和c-Jun氨基末端激酶(JNK)快速且持续的磷酸化,并且其毒性可通过抑制p38部分挽救,但抑制JNK或ERK则不能。BCI-215还过度激活MKK4/SEK1,提示应激反应的激活。激酶磷酸化谱分析表明BCI-215选择性激活MAPK及其下游底物,但不激活受体酪氨酸激酶、SRC家族激酶、AKT、mTOR或DNA损伤途径。我们的研究结果支持以下假设:BCI-215部分通过非氧化还原介导的MAPK信号激活导致选择性癌细胞细胞毒性,并且这些结果还确定了与免疫细胞杀伤的交叉点,值得进一步探索。