Suppr超能文献

高变形率、脑区、横向压缩及样本大小对大鼠脑剪切应力形态和大小的影响。

Influence of high deformation rate, brain region, transverse compression, and specimen size on rat brain shear stress morphology and magnitude.

作者信息

Haslach Henry W, Gipple Jenna M, Leahy Lauren N

机构信息

Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.

Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.

出版信息

J Mech Behav Biomed Mater. 2017 Apr;68:88-102. doi: 10.1016/j.jmbbm.2017.01.036. Epub 2017 Jan 26.

Abstract

An external mechanical insult to the brain, such as a blast, may create internal stress and deformation waves, which have shear and longitudinal components that can induce combined shear and compression of the brain tissue. To isolate the consequences of such interactions for the shear stress and to investigate the role of the extracellular fluid in the mechanical response, translational shear stretch at 10/s, 60/s, and 100/s translational shear rates under either 0% or 33% fixed transverse compression is applied without preconditioning to rat brain specimens. The specimens from the cerebrum, the cerebellum grey matter, and the brainstem white matter are nearly the full length of their respective regions. The translational shear stress response to translational shear deformation is characterized by the effect that each of four factors, high deformation rate, brain region, transverse compression, and specimen size, have on the shear stress magnitude averaged over ten specimens for each combination of factors. Increasing the deformation rate increases the magnitude of the shear stress at a given translational shear stretch, and as tested by ANOVAs so does applying transverse fixed compression of 33% of the thickness. The stress magnitude differs by the region that is the specimen source: cerebrum, cerebellum or brainstem. The magnitude of the shear stress response at a given deformation rate and stretch depends on the specimen length, called a specimen size effect. Surprisingly, under no compression a shorter length specimen requires more shear stress, but under 33% compression a shorter length specimen requires less shear stress, to meet a required shear deformation rate. The shear specimen size effect calls into question the applicability of the classical shear stress definition to hydrated soft biological tissue.

摘要

对大脑的外部机械损伤,如爆炸,可能会产生内部应力和变形波,这些应力和变形波具有剪切和纵向分量,可导致脑组织受到剪切和压缩的联合作用。为了分离这种相互作用对剪切应力的影响,并研究细胞外液在机械反应中的作用,在不进行预处理的情况下,对大鼠脑标本施加10/s、60/s和100/s的平移剪切速率,且在0%或33%的固定横向压缩下进行平移剪切拉伸。来自大脑、小脑灰质和脑干白质的标本几乎是其各自区域的全长。平移剪切变形的平移剪切应力响应的特征在于,高变形率、脑区、横向压缩和标本尺寸这四个因素中的每一个因素,对每种因素组合的十个标本平均的剪切应力大小所产生的影响。在给定的平移剪切拉伸下,增加变形率会增加剪切应力的大小,并且如方差分析所测试的,施加33%厚度的横向固定压缩也会增加剪切应力大小。应力大小因标本来源的区域而异:大脑、小脑或脑干。在给定的变形率和拉伸下,剪切应力响应的大小取决于标本长度,称为标本尺寸效应。令人惊讶的是,在无压缩情况下,较短长度的标本需要更大的剪切应力,但在33%压缩下,较短长度的标本需要较小的剪切应力,以达到所需的剪切变形率。剪切标本尺寸效应使人质疑经典剪切应力定义对水合软生物组织的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验