Dergacheva Olga, Yamanaka Akihiro, Schwartz Alan R, Polotsky Vsevolod Y, Mendelowitz David
Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia;
Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; and.
Am J Physiol Heart Circ Physiol. 2017 Apr 1;312(4):H808-H817. doi: 10.1152/ajpheart.00572.2016. Epub 2017 Feb 3.
Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic, neurotransmission in these pathways.
食欲素神经元以及食欲素受体的激活通常被认为具有交感兴奋作用;然而,食欲素神经元与一个可能的交感神经靶点——下丘脑室旁核(PVN)中投射至脊髓的神经元(SPNs)之间的功能连接尚未得到证实。为了验证食欲素神经元直接投射至PVN中的SPNs这一假说,研究人员在食欲素神经元中选择性表达了通道视紫红质-2(ChR2),以便在检测大鼠下丘脑切片中SPNs的诱发突触后电流时,能够对表达ChR2的纤维进行光激活。在所有被测试的SPNs(n = 34)中,食欲素纤维的选择性光激活引发了短潜伏期的突触后电流。这些光触发反应具有异质性,大多数为兴奋性谷氨酸能反应(59%),少数为抑制性γ-氨基丁酸能反应(35%)以及混合性谷氨酸能和γ-氨基丁酸能电流(6%)。在存在河豚毒素和4-氨基吡啶的情况下,谷氨酸能和γ-氨基丁酸能反应均存在,这表明食欲素神经元与SPNs之间存在单突触连接。除了产生突触后反应外,光刺激还促进了SPNs中的动作电位发放(电流钳配置)。应用食欲素受体拮抗剂阿莫瑞林可减少谷氨酸能而非γ-氨基丁酸能的突触后电流,这表明食欲素释放促进了该通路中的谷氨酸能神经传递。这项研究确定了一条神经回路,食欲素神经元可能通过该回路对心血管功能发挥交感兴奋控制作用。这是第一项在转基因大鼠模型中使用创新的光遗传学方法进行研究的实验,证实了从食欲素神经元到室旁脊髓投射神经元存在强大的异质性投射,包括兴奋性谷氨酸能和抑制性γ-氨基丁酸能神经传递。内源性食欲素释放调节这些通路中的谷氨酸能而非γ-氨基丁酸能神经传递。