Ariani Alarico, Silva Mario, Seletti Valeria, Bravi Elena, Saracco Marta, Parisi Simone, De Gennaro Fabio, Idolazzi Luca, Caramaschi Paola, Benini Camilla, Bodini Flavio Cesare, Scirè Carlo Alberto, Carrara Greta, Lumetti Federica, Alfieri Veronica, Bonati Elisa, Lucchini Gianluca, Aiello Marina, Santilli Daniele, Mozzani Flavio, Imberti Davide, Michieletti Emanuele, Arrigoni Eugenio, Delsante Giovanni, Pellerito Raffaele, Fusaro Enrico, Chetta Alfredo, Sverzellati Nicola
Department of Medicine, Internal Medicine and Rheumatology Unit, Azienda Ospedaliero.
Department of Clinical Sciences, Section of Radiology, University of Parma, Parma.
Rheumatology (Oxford). 2017 Jun 1;56(6):922-927. doi: 10.1093/rheumatology/kew480.
In this multicentre study, we aimed to evaluate the capacity of a computer-assisted automated QCT method to identify patients with SSc-associated interstitial lung disease (SSc-ILD) with high mortality risk according to validated composite clinical indexes (ILD-Gender, Age, Physiology index and du Bois index).
Chest CT, anamnestic data and pulmonary function tests of 146 patients with SSc were retrospectively collected, and the ILD-Gender, Age, Physiology score and DuBois index were calculated. Each chest CT underwent an operator-independent quantitative assessment performed with a free medical image viewer (Horos). The correlation between clinical prediction models and QCT parameters was tested. A value of P < 0.05 was considered statistically significant.
Most QCT parameters had a statistically different distribution in patients with diverging mortality risk according to both clinical prediction models (P < 0.01). The cut-offs of QCT parameters were calculated by receiver operating characteristic curve analysis, and most of them could discriminate patients with different mortality risk according to clinical prediction models.
QCT assessment of SSc-ILD can discriminate between well-defined different mortality risk categories, supporting its prognostic value. These findings, together with the operator independence, strengthen the validity and clinical usefulness of QCT for assessment of SSc-ILD.
在这项多中心研究中,我们旨在根据经过验证的综合临床指标(ILD-性别、年龄、生理学指标和杜波依斯指数),评估一种计算机辅助自动定量CT方法识别硬皮病相关间质性肺病(SSc-ILD)中具有高死亡风险患者的能力。
回顾性收集146例硬皮病患者的胸部CT、既往病史数据和肺功能测试结果,并计算ILD-性别、年龄、生理学评分和杜波依斯指数。使用免费医学图像查看器(Horos)对每例胸部CT进行独立于操作者的定量评估。测试临床预测模型与定量CT参数之间的相关性。P<0.05的值被认为具有统计学意义。
根据两种临床预测模型,大多数定量CT参数在具有不同死亡风险的患者中具有统计学上不同的分布(P<0.01)。通过受试者工作特征曲线分析计算定量CT参数的临界值,其中大多数参数可根据临床预测模型区分具有不同死亡风险的患者。
SSc-ILD的定量CT评估可以区分明确的不同死亡风险类别,支持其预后价值。这些发现,连同其独立于操作者的特性,增强了定量CT评估SSc-ILD的有效性和临床实用性。