Center of Experimental Rheumatology, Dept of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
Institute of Lung Biology and Disease and Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
Eur Respir J. 2022 May 19;59(5). doi: 10.1183/13993003.04503-2020. Print 2022 May.
Radiomic features calculated from routine medical images show great potential for personalised medicine in cancer. Patients with systemic sclerosis (SSc), a rare, multiorgan autoimmune disorder, have a similarly poor prognosis due to interstitial lung disease (ILD). Here, our objectives were to explore computed tomography (CT)-based high-dimensional image analysis ("radiomics") for disease characterisation, risk stratification and relaying information on lung pathophysiology in SSc-ILD.
We investigated two independent, prospectively followed SSc-ILD cohorts (Zurich, derivation cohort, n=90; Oslo, validation cohort, n=66). For every subject, we defined 1355 robust radiomic features from standard-of-care CT images. We performed unsupervised clustering to identify and characterise imaging-based patient clusters. A clinically applicable prognostic quantitative radiomic risk score (qRISSc) for progression-free survival (PFS) was derived from radiomic profiles using supervised analysis. The biological basis of qRISSc was assessed in a cross-species approach by correlation with lung proteomic, histological and gene expression data derived from mice with bleomycin-induced lung fibrosis.
Radiomic profiling identified two clinically and prognostically distinct SSc-ILD patient clusters. To evaluate the clinical applicability, we derived and externally validated a binary, quantitative radiomic risk score (qRISSc) composed of 26 features that accurately predicted PFS and significantly improved upon clinical risk stratification parameters in multivariable Cox regression analyses in the pooled cohorts. A high qRISSc score, which identifies patients at risk for progression, was reverse translatable from human to experimental ILD and correlated with fibrotic pathway activation.
Radiomics-based risk stratification using routine CT images provides complementary phenotypic, clinical and prognostic information significantly impacting clinical decision making in SSc-ILD.
从常规医学图像中计算出的放射组学特征在癌症的个性化医学中显示出巨大的潜力。患有系统性硬化症(SSc)的患者,一种罕见的多器官自身免疫性疾病,由于间质性肺病(ILD),预后同样较差。在这里,我们的目标是探索基于计算机断层扫描(CT)的高维图像分析(“放射组学”),以对 SSc-ILD 进行疾病特征描述、风险分层和传递肺病理生理学信息。
我们研究了两个独立的、前瞻性随访的 SSc-ILD 队列(苏黎世,推导队列,n=90;奥斯陆,验证队列,n=66)。对于每个患者,我们从标准护理 CT 图像中定义了 1355 个稳健的放射组学特征。我们进行了无监督聚类,以识别和描述成像为基础的患者聚类。使用有监督分析从放射组学特征中得出用于无进展生存期(PFS)的临床适用的定量放射组学风险评分(qRISSc)。通过与来自博来霉素诱导的肺纤维化的小鼠的肺蛋白质组学、组织学和基因表达数据的交叉物种相关性,评估 qRISSc 的生物学基础。
放射组学分析确定了两种临床上和预后上截然不同的 SSc-ILD 患者聚类。为了评估临床适用性,我们推导并在外部验证了一个由 26 个特征组成的二分类、定量放射组学风险评分(qRISSc),该评分能够准确预测 PFS,并在多变量 Cox 回归分析中显著提高了在 pooled 队列中的临床风险分层参数。高 qRISSc 评分识别出有进展风险的患者,这一评分可从人类转化为实验性 ILD,并与纤维化途径激活相关。
基于放射组学的风险分层使用常规 CT 图像提供了补充的表型、临床和预后信息,对 SSc-ILD 的临床决策产生了重大影响。