Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
Department of Radiology, Graduate School of Medicine, Osaka University, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Med Biol Eng Comput. 2017 Sep;55(9):1605-1619. doi: 10.1007/s11517-017-1617-y. Epub 2017 Feb 4.
The integration of phase-contrast magnetic resonance images (PC-MRI) and computational fluid dynamics (CFD) is a way to obtain detailed information of patient-specific hemodynamics. This study proposes a novel strategy for imposing a pressure condition on the outlet boundary (called the outlet pressure) in CFD to minimize velocity differences between the PC-MRI measurement and the CFD simulation, and to investigate the effects of outlet pressure on the numerical solution. The investigation involved ten patient-specific aneurysms reconstructed from a digital subtraction angiography image, specifically on aneurysms located at the bifurcation region. To evaluate the effects of imposing the outlet pressure, three different approaches were used, namely: a pressure-fixed (P-fixed) approach; a flow rate control (Q-control) approach; and a velocity-field-optimized (V-optimized) approach. Numerical investigations show that the highest reduction in velocity difference always occurs in the V-optimized approach, where the mean of velocity difference (normalized by inlet velocity) is 19.3%. Additionally, the highest velocity differences appear near to the wall and vessel bifurcation for 60% of the patients, resulting in differences in wall shear stress. These findings provide a new methodology for PC-MRI integrated CFD simulation and are useful for understanding the evaluation of velocity difference between the PC-MRI and CFD.
相位对比磁共振图像(PC-MRI)与计算流体动力学(CFD)的整合是获取患者特定血液动力学详细信息的一种方法。本研究提出了一种在 CFD 中对出口边界施加压力条件(称为出口压力)的新策略,以最小化 PC-MRI 测量值和 CFD 模拟值之间的速度差异,并研究出口压力对数值解的影响。该研究涉及从数字减影血管造影图像重建的十个患者特定的动脉瘤,特别是位于分叉区域的动脉瘤。为了评估施加出口压力的效果,使用了三种不同的方法,即:压力固定(P-固定)方法;流量控制(Q-控制)方法;和速度场优化(V-优化)方法。数值研究表明,在 V-优化方法中,速度差异的最大减少总是发生,其中速度差异的平均值(相对于入口速度归一化)为 19.3%。此外,对于 60%的患者,速度差异最高出现在靠近壁面和血管分叉处,导致壁面剪切应力的差异。这些发现为 PC-MRI 集成 CFD 模拟提供了一种新的方法,有助于理解 PC-MRI 和 CFD 之间的速度差异评估。