Suppr超能文献

血流建模中的反问题:综述。

Inverse problems in blood flow modeling: A review.

机构信息

Bernoulli Institute, University of Groningen, Groningen, The Netherlands.

Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.

出版信息

Int J Numer Method Biomed Eng. 2022 Aug;38(8):e3613. doi: 10.1002/cnm.3613. Epub 2022 May 24.

Abstract

Mathematical and computational modeling of the cardiovascular system is increasingly providing non-invasive alternatives to traditional invasive clinical procedures. Moreover, it has the potential for generating additional diagnostic markers. In blood flow computations, the personalization of spatially distributed (i.e., 3D) models is a key step which relies on the formulation and numerical solution of inverse problems using clinical data, typically medical images for measuring both anatomy and function of the vasculature. In the last years, the development and application of inverse methods has rapidly expanded most likely due to the increased availability of data in clinical centers and the growing interest of modelers and clinicians in collaborating. Therefore, this work aims to provide a wide and comparative overview of literature within the last decade. We review the current state of the art of inverse problems in blood flows, focusing on studies considering fully dimensional fluid and fluid-solid models. The relevant physical models and hemodynamic measurement techniques are introduced, followed by a survey of mathematical data assimilation approaches used to solve different kinds of inverse problems, namely state and parameter estimation. An exhaustive discussion of the literature of the last decade is presented, structured by types of problems, models and available data.

摘要

心血管系统的数学和计算建模越来越多地为传统的有创临床程序提供了非侵入性的替代方法。此外,它还有可能产生额外的诊断标志物。在血流计算中,对空间分布(即 3D)模型进行个性化处理是一个关键步骤,它依赖于使用临床数据(通常是医学图像)来构建和数值求解反问题,以测量脉管系统的解剖结构和功能。在过去的几年中,反演方法的发展和应用迅速扩展,这很可能是由于临床中心数据的可用性增加,以及建模人员和临床医生合作兴趣的增长。因此,这项工作旨在提供过去十年中相关文献的广泛而全面的综述。我们回顾了血流中反问题的最新研究进展,重点关注考虑全维流固耦合模型的研究。介绍了相关的物理模型和血液动力学测量技术,随后调查了用于解决不同类型反问题(即状态和参数估计)的数学数据同化方法。最后,我们按问题、模型和可用数据的类型对过去十年的文献进行了详尽的讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b2/9541505/04ff2f9fda6a/CNM-38-e3613-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验