Massey Cancer Center, Virginia Commonwealth University, Richmond, USA.
Redox Biol. 2015 Aug;5:414. doi: 10.1016/j.redox.2015.09.013. Epub 2015 Dec 30.
Regardless of etiology, inflammatory conditions are characterized by overexpression of inducible nitric oxide synthase (iNOS) and overproduction of nitric oxide and reactive nitrogen species (NO/RNS) in epithelial and inflammatory cells at the site of carcinogenesis. NO/RNS produced in inflamed tissues can contribute to the process of carcinogenesis by different mechanisms. One of these mechanisms is NO-dependent stimulation of genomic instability by inhibiting of Breast Cancer type 1 Susceptibility protein (BRCA1) expression. Block of BRCA1 expression shifts DNA double-strand breaks (DSB) repair from error-free high-fidelity homologous recombination repair (HRR) to error-prone nonhomologous end joining (NHEJ). BRCA1 epigenetically block miRNA-155 expression via its association with HDAC2, which deacetylates histones H2A and H3 on the miRNA-155 promoter. The miRNA-155 is responsible for post-translational silencing of essential members of mismatch repair (MMR) core: MSH2, MSH6, and MLH1 proteins. They epigenetic inactivation induces DNA microsatellite instability (MSI). Recently, we demonstrated NO-dependent downregulation of MMR core proteins (MSH2, MSH6, and MLH1) through the ↓BRCA1/↑miRNA-155 signaling pathway. Hence, another NO-dependent mechanism of genomic instability is downregulation of MMR core proteins and stimulation of the DNA MSI. Loss or inhibition of Poly(ADP-ribose) polymerase 1 (PARP1) activity results in accumulation of DNA single-strand breaks, which are subsequently converted to DSB by the transcription machinery. In BRCA-positive cells, DSB are repaired by HRR, but they cannot be properly repaired in BRCA1-deficient cells, leading to genomic instability, chromosomal rearrangements, and cell death. Our data demonstrated that combination of NO-donors with PARP inhibitors significantly sensitized the BRCA1-positive cancer cells to DNA-damaging agents.
无论病因如何,炎症状态的特征是在致癌部位上皮细胞和炎症细胞中诱导型一氧化氮合酶(iNOS)过度表达和一氧化氮和活性氮物种(NO/RNS)过度产生。在炎症组织中产生的 NO/RNS 可以通过不同的机制促进癌变过程。其中一种机制是通过抑制乳腺癌 1 型易感蛋白(BRCA1)的表达,NO 依赖性刺激基因组不稳定性。BRCA1 表达的阻断将 DNA 双链断裂(DSB)修复从无错误高保真同源重组修复(HRR)转移到易错非同源末端连接(NHEJ)。BRCA1 通过与 HDAC2 结合来抑制 miRNA-155 的表达,从而使 miRNA-155 启动子上的组蛋白 H2A 和 H3 去乙酰化。miRNA-155 负责错配修复(MMR)核心必需成员的翻译后沉默:MSH2、MSH6 和 MLH1 蛋白。它们的表观遗传失活诱导 DNA 微卫星不稳定性(MSI)。最近,我们通过↓BRCA1/↑miRNA-155 信号通路证明了 NO 依赖性 MMR 核心蛋白(MSH2、MSH6 和 MLH1)的下调。因此,基因组不稳定性的另一种 NO 依赖性机制是 MMR 核心蛋白的下调和 DNA MSI 的刺激。聚(ADP-核糖)聚合酶 1(PARP1)活性的丧失或抑制导致 DNA 单链断裂的积累,随后由转录机制将其转化为 DSB。在 BRCA 阳性细胞中,DSB 通过 HRR 修复,但在 BRCA1 缺陷细胞中不能正确修复,导致基因组不稳定性、染色体重排和细胞死亡。我们的数据表明,NO 供体与 PARP 抑制剂的联合显著增强了 BRCA1 阳性癌细胞对 DNA 损伤剂的敏感性。