Suppr超能文献

肺部的多模态分子成像

Multimodality molecular imaging of the lung.

作者信息

Chen Delphine L, Kinahan Paul E

机构信息

Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA. Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Campus Box 8225, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.

Department of Radiology and Bioengineering and Physics, University of Washington Medical Center, Seattle, WA, USA.

出版信息

Clin Transl Imaging. 2014 Oct;2(5):391-401. doi: 10.1007/s40336-014-0084-9. Epub 2014 Oct 16.

Abstract

Lung diseases cause significant morbidity and mortality and lead to high healthcare utilization. However, few lung disease-specific biomarkers are available to accurately monitor disease activity for the purposes of clinical management or drug development. Advances in cross-modal imaging technologies, such as combined positron emission tomography (PET) and magnetic resonance (MR) imaging scanners and PET or single-photon emission computed tomography (SPECT) combined with computed tomography (CT), may aid in the development of noninvasive, molecular-based biomarkers for lung disease. However, the lungs pose particular challenges in obtaining accurate quantification of imaging data due to the low density of the organ and breathing motion. This review covers the basic physics underlying PET, SPECT, CT, and MR lung imaging and presents technical considerations for multimodal imaging with regard to PET and SPECT quantification. It also includes a brief review of the current and potential clinical applications for these hybrid imaging technologies.

摘要

肺部疾病会导致严重的发病和死亡,并导致大量的医疗资源使用。然而,目前几乎没有针对肺部疾病的特异性生物标志物可用于准确监测疾病活动,以进行临床管理或药物研发。跨模态成像技术的进步,如正电子发射断层扫描(PET)与磁共振(MR)成像扫描仪联用,以及PET或单光子发射计算机断层扫描(SPECT)与计算机断层扫描(CT)联用,可能有助于开发基于分子的非侵入性肺部疾病生物标志物。然而,由于肺部器官密度低和呼吸运动,在获得准确的成像数据定量方面,肺部存在特殊挑战。本综述涵盖了PET、SPECT、CT和MR肺部成像的基本物理学原理,并介绍了在PET和SPECT定量方面多模态成像的技术考量。它还简要回顾了这些混合成像技术的当前和潜在临床应用。

相似文献

1
Multimodality molecular imaging of the lung.
Clin Transl Imaging. 2014 Oct;2(5):391-401. doi: 10.1007/s40336-014-0084-9. Epub 2014 Oct 16.
2
Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging.
Q J Nucl Med Mol Imaging. 2016 Mar;60(1):25-39. Epub 2015 Nov 17.
4
Multimodality molecular imaging of the lung.
J Magn Reson Imaging. 2010 Dec;32(6):1409-20. doi: 10.1002/jmri.22385.
5
The role of single-photon emission computed tomography/computed tomography in benign and malignant bone disease.
Semin Nucl Med. 2006 Oct;36(4):286-94. doi: 10.1053/j.semnuclmed.2006.05.001.
8
[New challenges and perspectives in nuclear medicine imaging].
Magy Onkol. 2014 Dec;58(4):232-8. Epub 2014 Oct 22.
9
Multimodality imaging techniques.
Contrast Media Mol Imaging. 2010 Jul-Aug;5(4):180-9. doi: 10.1002/cmmi.393.
10
Recent advances in hybrid molecular imaging systems.
Semin Musculoskelet Radiol. 2014 Apr;18(2):103-22. doi: 10.1055/s-0034-1371014. Epub 2014 Apr 8.

引用本文的文献

1
Lung imaging methods: indications, strengths and limitations.
Breathe (Sheff). 2024 Oct 1;20(3):230127. doi: 10.1183/20734735.0127-2023. eCollection 2024 Oct.
2
Spatial lung imaging in clinical and translational settings.
Breathe (Sheff). 2024 Oct 1;20(3):230224. doi: 10.1183/20734735.0224-2023. eCollection 2024 Oct.
3
Morphology supporting function: attenuation correction for SPECT/CT, PET/CT, and PET/MR imaging.
Q J Nucl Med Mol Imaging. 2016 Mar;60(1):25-39. Epub 2015 Nov 17.

本文引用的文献

1
Aggregation-induced near-infrared absorption of squaraine dye in an albumin nanocomplex for photoacoustic tomography in vivo.
ACS Appl Mater Interfaces. 2014 Oct 22;6(20):17985-92. doi: 10.1021/am504816h. Epub 2014 Oct 1.
2
Development and applications of radioactive nanoparticles for imaging of biological systems.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Nov-Dec;6(6):628-40. doi: 10.1002/wnan.1292. Epub 2014 Sep 4.
4
Pulmonary disease in cystic fibrosis: assessment with chest CT at chest radiography dose levels.
Radiology. 2014 Nov;273(2):597-605. doi: 10.1148/radiol.14132201. Epub 2014 Jul 25.
5
Advances in functional and structural imaging of the human lung using proton MRI.
NMR Biomed. 2014 Dec;27(12):1542-56. doi: 10.1002/nbm.3156. Epub 2014 Jul 2.
6
Ultra-short echo-time pulmonary MRI: evaluation and reproducibility in COPD subjects with and without bronchiectasis.
J Magn Reson Imaging. 2015 May;41(5):1465-74. doi: 10.1002/jmri.24680. Epub 2014 Jun 26.
8
ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization.
Radiology. 2014 Aug;272(2):568-76. doi: 10.1148/radiol.14140789. Epub 2014 Jun 2.
10
Role of compressive sensing technique in dose reduction for chest computed tomography: a prospective blinded clinical study.
J Comput Assist Tomogr. 2014 Sep-Oct;38(5):760-7. doi: 10.1097/RCT.0000000000000098.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验