Suppr超能文献

利用质子磁共振成像对人类肺部进行功能和结构成像的进展。

Advances in functional and structural imaging of the human lung using proton MRI.

作者信息

Miller G Wilson, Mugler John P, Sá Rui C, Altes Talissa A, Prisk G Kim, Hopkins Susan R

机构信息

Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.

出版信息

NMR Biomed. 2014 Dec;27(12):1542-56. doi: 10.1002/nbm.3156. Epub 2014 Jul 2.

Abstract

The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed depiction of airway disease. Although there is opportunity for further optimization, such approaches to structural lung imaging are ready for clinical testing.

摘要

质子肺部磁共振成像领域正在多个方面取得进展。在功能成像领域,现在可以使用动脉自旋标记(ASL)和氧增强成像技术,分别以标准测量单位量化局部灌注和通气。通过将这些技术整合到一次扫描中,还可以量化局部通气-灌注比,这是肺部气体交换效率的最重要决定因素。为了证明准确且有意义地测量肺功能的潜力,该技术被用于研究健康受试者通气、灌注和通气-灌注比的重力梯度,得出的定量结果与预期的区域变化一致。此类技术也可应用于时域,为研究肺功能的时间动态提供新工具。时域ASL测量显示,暴露于低氧环境的健康受试者肺血流的时空异质性增加,这表明该技术对诸如低氧性肺血管收缩等主动控制机制敏感,也说明要全面研究影响肺功能的因素,有必要考虑时间和空间变异性。进一步发展以增加空间覆盖范围并提高稳健性,将增强这些新功能成像工具的临床适用性。在结构成像领域,可以将诸如超短回波时间径向k空间采集、超快稳态自由进动和基于成像的膈肌触发等脉冲序列技术结合起来,以克服与肺部质子磁共振成像相关的重大挑战,从而在临床合理的扫描时间内实现全肺的高质量三维成像。使用这些技术对健康受试者和囊性纤维化患者进行成像,显示出在非对比剂肺血管造影和气道疾病详细描绘方面具有巨大潜力。尽管还有进一步优化的空间,但这种肺部结构成像方法已准备好进行临床试验。

相似文献

1
Advances in functional and structural imaging of the human lung using proton MRI.
NMR Biomed. 2014 Dec;27(12):1542-56. doi: 10.1002/nbm.3156. Epub 2014 Jul 2.
4
Assessing the pulmonary vascular responsiveness to oxygen with proton MRI.
J Appl Physiol (1985). 2024 Apr 1;136(4):853-863. doi: 10.1152/japplphysiol.00747.2023. Epub 2024 Feb 22.
5
Outracing Lung Signal Decay - Potential of Ultrashort Echo Time MRI.
Rofo. 2019 May;191(5):415-423. doi: 10.1055/a-0715-2246. Epub 2018 Sep 26.
8
The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.
J Appl Physiol (1985). 2013 Aug 1;115(3):313-24. doi: 10.1152/japplphysiol.01531.2012. Epub 2013 Apr 25.
9
Proton MRI of the Lung: How to Tame Scarce Protons and Fast Signal Decay.
J Magn Reson Imaging. 2021 May;53(5):1344-1357. doi: 10.1002/jmri.27122. Epub 2020 Mar 12.

引用本文的文献

1
Establishing a 4D-CT lung function related volumetric dose model to reduce radiation pneumonia.
Sci Rep. 2024 Jun 1;14(1):12589. doi: 10.1038/s41598-024-63251-0.
3
From Pixels to Pathology: Employing Computer Vision to Decode Chest Diseases in Medical Images.
Cureus. 2023 Sep 20;15(9):e45587. doi: 10.7759/cureus.45587. eCollection 2023 Sep.
5
Novel Thoracic MRI Approaches for the Assessment of Pulmonary Physiology and Inflammation.
Adv Exp Med Biol. 2021;1304:123-145. doi: 10.1007/978-3-030-68748-9_8.
6
A review of the role of MRI in diagnosis and treatment of early stage lung cancer.
Clin Transl Radiat Oncol. 2020 Jun 6;24:16-22. doi: 10.1016/j.ctro.2020.06.002. eCollection 2020 Sep.
7
Dynamic perfluorinated gas MRI reveals abnormal ventilation despite normal FEV1 in cystic fibrosis.
JCI Insight. 2020 Jan 30;5(2):133400. doi: 10.1172/jci.insight.133400.
8
Current state of the art MRI for the longitudinal assessment of cystic fibrosis.
J Magn Reson Imaging. 2020 Nov;52(5):1306-1320. doi: 10.1002/jmri.27030. Epub 2019 Dec 17.
9
Quantification of Ventilation and Gas Uptake in Free-Breathing Mice With Hyperpolarized Xe MRI.
IEEE Trans Med Imaging. 2019 Sep;38(9):2081-2091. doi: 10.1109/TMI.2019.2911293. Epub 2019 Apr 15.
10
Fibrosis imaging: Current concepts and future directions.
Adv Drug Deliv Rev. 2017 Nov 1;121:9-26. doi: 10.1016/j.addr.2017.10.013. Epub 2017 Nov 20.

本文引用的文献

1
Lung nodule detection in a high-risk population: comparison of magnetic resonance imaging and low-dose computed tomography.
Eur J Radiol. 2014 Mar;83(3):600-5. doi: 10.1016/j.ejrad.2013.11.012. Epub 2013 Dec 4.
2
Quantification of regional fractional ventilation in human subjects by measurement of hyperpolarized 3He washout with 2D and 3D MRI.
J Appl Physiol (1985). 2014 Jan 15;116(2):129-39. doi: 10.1152/japplphysiol.00378.2013. Epub 2013 Dec 5.
6
The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.
J Appl Physiol (1985). 2013 Aug 1;115(3):313-24. doi: 10.1152/japplphysiol.01531.2012. Epub 2013 Apr 25.
7
Accelerated fractional ventilation imaging with hyperpolarized Gas MRI.
Magn Reson Med. 2013 Nov;70(5):1353-9. doi: 10.1002/mrm.24582. Epub 2013 Feb 11.
9
Optimized 3D ultrashort echo time pulmonary MRI.
Magn Reson Med. 2013 Nov;70(5):1241-50. doi: 10.1002/mrm.24570. Epub 2012 Dec 4.
10
Spatial-temporal dynamics of pulmonary blood flow in the healthy human lung in response to altered FI(O2).
J Appl Physiol (1985). 2013 Jan 1;114(1):107-18. doi: 10.1152/japplphysiol.00433.2012. Epub 2012 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验