Suppr超能文献

利用室温激发态自旋-应变相互作用冷却机械谐振器中的氮空位中心。

Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin-strain interaction.

机构信息

Department of Physics, Cornell University, Ithaca, New York 14853, USA.

Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.

出版信息

Nat Commun. 2017 Feb 6;8:14358. doi: 10.1038/ncomms14358.

Abstract

Cooling a mechanical resonator mode to a sub-thermal state has been a long-standing challenge in physics. This pursuit has recently found traction in the field of optomechanics in which a mechanical mode is coupled to an optical cavity. An alternate method is to couple the resonator to a well-controlled two-level system. Here we propose a protocol to dissipatively cool a room temperature mechanical resonator using a nitrogen-vacancy centre ensemble. The spin ensemble is coupled to the resonator through its orbitally-averaged excited state, which has a spin-strain interaction that has not been previously studied. We experimentally demonstrate that the spin-strain coupling in the excited state is 13.5±0.5 times stronger than the ground state spin-strain coupling. We then theoretically show that this interaction, combined with a high-density spin ensemble, enables the cooling of a mechanical resonator from room temperature to a fraction of its thermal phonon occupancy.

摘要

将机械谐振器模式冷却到亚热状态一直是物理学中的一个长期挑战。最近,在光机械领域,这一追求取得了进展,其中机械模式与光学腔耦合。另一种方法是将谐振器与一个经过良好控制的两能级系统耦合。在这里,我们提出了一种使用氮空位中心集来耗散冷却室温机械谐振器的方案。自旋集通过其轨道平均激发态与谐振器耦合,而这种激发态具有以前未研究过的自旋-应变相互作用。我们通过实验证明,激发态中的自旋-应变耦合比基态自旋-应变耦合强 13.5±0.5 倍。然后,我们从理论上表明,这种相互作用与高密度的自旋集结合,可以使机械谐振器从室温冷却到其热声子占据的一小部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/950f/5303879/cbeae0fd32a4/ncomms14358-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验