Chen Huaibin, Marsiglia William M, Cho Min-Kyu, Huang Zhifeng, Deng Jingjing, Blais Steven P, Gai Weiming, Bhattacharya Shibani, Neubert Thomas A, Traaseth Nathaniel J, Mohammadi Moosa
Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States.
Department of Chemistry, New York University, New York, United States.
Elife. 2017 Feb 6;6:e21137. doi: 10.7554/eLife.21137.
Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the 'molecular brake', 'DFG latch', 'A-loop plug', and 'αC tether'. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs.
受体酪氨酸激酶(RTK)信号传导在细胞内酪氨酸激酶结构域内通过蛋白质变构受到严格调控。然而,酪氨酸激酶结构域中变构连接的分子决定因素尚未完全了解。通过对影响成纤维细胞生长因子受体(FGFR)酪氨酸激酶结构域的致病性功能获得性突变进行结构(X射线和核磁共振)和功能表征,我们阐明了一个由四个相互连接的位点组成的长距离变构网络,这些位点被称为“分子制动器”、“DFG锁扣”、“A环塞子”和“αC系链”。前三个位点抑制激酶采用活性构象,而αC系链促进活性构象。这个四位点变构网络的不对称设计施加了严格的自抑制,并解释了针对单个位点的致病性突变对活化构象的不完全模拟。基于RTK之间共享的结构相似性,我们提出这种FGFR激酶的变构模型适用于其他RTK。