Suppr超能文献

通过温度和核不变化学位移协变鉴定核心变构位点。

Identification of core allosteric sites through temperature- and nucleus-invariant chemical shift covariance.

机构信息

Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada.

Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.

出版信息

Biophys J. 2022 Jun 7;121(11):2035-2045. doi: 10.1016/j.bpj.2022.05.004. Epub 2022 May 10.

Abstract

Allosteric regulation is essential to control biological function. In addition, allosteric sites offer a promising venue for selective drug targeting. However, accurate mapping of allosteric sites remains challenging since allostery relies on often subtle, yet functionally relevant, structural and dynamical changes. A viable approach proposed to overcome such challenge is chemical shift covariance analysis (CHESCA). Although CHESCA offers an exhaustive map of allosteric networks, it is critical to define the core allosteric sites to be prioritized in subsequent functional studies or in the design of allosteric drugs. Here, we propose two new CHESCA-based methodologies, called temperature CHESCA (T-CHESCA) and CLASS-CHESCA, aimed at narrowing down allosteric maps to the core allosteric residues. Both T- and CLASS-CHESCAs rely on the invariance of core inter-residue correlations to changes in the chemical shifts of the active and inactive conformations interconverting in fast exchange. In T-CHESCA the chemical shifts of such states are modulated through temperature changes, while in CLASS-CHESCA through variations in the spin-active nuclei involved in pairwise correlations. T- and CLASS-CHESCAs, as well as complete-linkage CHESCA, were applied to the cAMP-binding domain of the exchange protein directly activated by cAMP (EPAC), which serves as a prototypical allosteric switch. Residues consistently identified by the three CHESCA methods were found in previously identified EPAC allosteric core sites. Hence, T-, CLASS-, and CL-CHESCA provide a toolset to establish allosteric site hierarchy and triage allosteric sites to be further analyzed by mutations and functional assays. Furthermore, the core allosteric networks selectively revealed through T- and CLASS-CHESCA are expected to facilitate the mechanistic understanding of disease-related mutations and the design of selective allosteric modulators.

摘要

变构调节对于控制生物功能至关重要。此外,变构位点为选择性药物靶向提供了一个有前途的场所。然而,由于变构依赖于通常微妙但功能相关的结构和动力学变化,因此准确映射变构位点仍然具有挑战性。一种可行的方法是化学位移协方差分析(CHESCA)。虽然 CHESCA 提供了变构网络的详尽图谱,但定义核心变构位点以优先在随后的功能研究或变构药物设计中进行仍然至关重要。在这里,我们提出了两种新的基于 CHESCA 的方法,称为温度 CHESCA(T-CHESCA)和 CLASS-CHESCA,旨在将变构图谱缩小到核心变构残基。T-和 CLASS-CHESCAs 都依赖于核心残基间相关性在活性和非活性构象之间快速交换时化学位移变化的不变性。在 T-CHESCA 中,通过改变温度来调节这些状态的化学位移,而在 CLASS-CHESCA 中则通过涉及成对相关的自旋活性核的变化来调节。T-CHESCA 和 CLASS-CHESCA 以及完全链接 CHESCA 被应用于环腺苷酸结合域的交换蛋白直接激活的环腺苷酸(EPAC),它作为一个典型的变构开关。通过三种 CHESCA 方法一致识别的残基位于先前鉴定的 EPAC 变构核心位点中。因此,T-、CLASS-和 CL-CHESCA 提供了一种工具集,可以建立变构位点层次结构,并通过突变和功能测定进一步分析变构位点。此外,通过 T-和 CLASS-CHESCA 选择性揭示的核心变构网络有望促进对与疾病相关的突变的机制理解和选择性变构调节剂的设计。

相似文献

2
Mapping allostery through the covariance analysis of NMR chemical shifts.通过核磁共振化学位移的协方差分析来映射变构。
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6133-8. doi: 10.1073/pnas.1017311108. Epub 2011 Mar 28.
8
The auto-inhibitory role of the EPAC hinge helix as mapped by NMR.NMR 定位的 EPAC 铰链螺旋的自动抑制作用。
PLoS One. 2012;7(11):e48707. doi: 10.1371/journal.pone.0048707. Epub 2012 Nov 21.

本文引用的文献

8
Identifying coupled clusters of allostery participants through chemical shift perturbations.通过化学位移扰动识别变构作用的偶联簇。
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2078-2085. doi: 10.1073/pnas.1811168116. Epub 2019 Jan 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验