Stratingh Institute for Chemistry, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands.
Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg , 8 allée Gaspard Monge, Strasbourg 67000, France.
Acc Chem Res. 2017 Feb 21;50(2):376-386. doi: 10.1021/acs.accounts.6b00594. Epub 2017 Feb 7.
Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment.
构态动态化学(CDC)的特点是在分子和超分子水平上使用可逆键,包括可逆共价键(动态共价化学,DCC)和非共价相互作用(动态非共价化学,DNCC)。由于其固有的可逆性和刺激响应性,CDC 已被广泛用作筛选生物活性化合物、利用分子识别驱动的受体或底物以及制造构态动态材料的有力工具。在生物聚合物科学中实施 CDC 会导致在分子水平上(分子生物动态聚合物)通过 DCC 或在超分子水平上(超分子生物动态聚合物)通过 DNCC 产生生物聚合物的构态动态类似物。因此,生物动态聚合物是通过生物相关单体的可逆共价聚合或非共价多聚联作用制备的。特别是,分子生物动态聚合物是通过生物基单体的可逆聚合生成的共价型生物动态聚合物,其单体单元通过可逆共价键连接,可以看作是具有 DCC 的生物聚合物的组合。由于 DCC 中使用的可逆共价键,分子生物动态聚合物可以通过生物相关单体的掺入/脱附和交换,在内部或外部刺激下,进行连续自发的构态修饰。因此,它们表现为具有自适应材料的特性,具有新颖的性质,例如自修复、刺激响应性和可调机械和光学特性。更具体地说,分子生物动态聚合物将生物活性单体的生物相关特性(例如生物相容性、生物可降解性、生物功能性)与可逆共价键的动态特性(例如可改变、可调、可控、自修复和刺激响应能力)结合起来,在一个系统中实现协同性质。此外,分子生物动态聚合物通常在温和甚至生理条件下在水性介质中生产,以适应其与生物相关的应用。与强调使用不可逆共价键来实现结构稳定性和统一性的静态生物聚合物不同,分子生物动态聚合物通过形成可逆共价键来寻求相对结构适应性和多样性。基于这些考虑因素,分子生物动态聚合物能够重新组织其单体,生成、识别和放大对环境因素最适应的结构。因此,分子生物动态聚合物在过去几十年中受到了相当多的关注。因此,通过碱基、糖或氨基酸基单体的平衡聚合来构建分子生物动态聚合物,可以分别得到动态核酸(DyNAs)、多糖(糖动态聚合物)或蛋白质(动态蛋白类似物)的动态类似物。在本综述中,我们总结了近年来在开发不同类型的分子生物动态聚合物作为生物聚合物的结构或功能仿生物方面的进展,包括 DyNAs、糖动态聚合物和动态蛋白类似物。我们介绍了化学家如何利用各种可逆反应在水性介质中生成具有特定序列和有序结构的分子生物动态聚合物。我们还讨论并列出了它们在药物输送、药物发现、基因传感、癌症诊断和治疗等各个研究领域的潜在应用。