Gavryushkina Alexandra, Heath Tracy A, Ksepka Daniel T, Stadler Tanja, Welch David, Drummond Alexei J
Centre for Computational Evolution, University of Auckland, Auckland, New Zealand.
Department of Computer Science, University of Auckland, Auckland, New Zealand.
Syst Biol. 2017 Jan 1;66(1):57-73. doi: 10.1093/sysbio/syw060.
The total-evidence approach to divergence time dating uses molecular and morphological data from extant and fossil species to infer phylogenetic relationships, species divergence times, and macroevolutionary parameters in a single coherent framework. Current model-based implementations of this approach lack an appropriate model for the tree describing the diversification and fossilization process and can produce estimates that lead to erroneous conclusions. We address this shortcoming by providing a total-evidence method implemented in a Bayesian framework. This approach uses a mechanistic tree prior to describe the underlying diversification process that generated the tree of extant and fossil taxa. Previous attempts to apply the total-evidence approach have used tree priors that do not account for the possibility that fossil samples may be direct ancestors of other samples, that is, ancestors of fossil or extant species or of clades. The fossilized birth–death (FBD) process explicitly models the diversification, fossilization, and sampling processes and naturally allows for sampled ancestors. This model was recently applied to estimate divergence times based on molecular data and fossil occurrence dates. We incorporate the FBD model and a model of morphological trait evolution into a Bayesian total-evidence approach to dating species phylogenies. We apply this method to extant and fossil penguins and show that the modern penguins radiated much more recently than has been previously estimated, with the basal divergence in the crown clade occurring at ∼12.7 ∼12.7 Ma and most splits leading to extant species occurring in the last 2 myr. Our results demonstrate that including stem-fossil diversity can greatly improve the estimates of the divergence times of crown taxa. The method is available in BEAST2 (version 2.4) software www.beast2.org with packages SA (version at least 1.1.4) and morph-models (version at least 1.0.4) installed.
用于分歧时间定年的全证据方法使用来自现存物种和化石物种的分子和形态数据,在一个连贯的单一框架中推断系统发育关系、物种分歧时间和宏观进化参数。该方法当前基于模型的实现缺乏一个用于描述多样化和化石形成过程的合适树模型,并且可能产生导致错误结论的估计。我们通过提供一种在贝叶斯框架中实现的全证据方法来解决这一缺点。这种方法使用一个机制树先验来描述产生现存和化石分类单元树的潜在多样化过程。以前应用全证据方法的尝试使用的树先验没有考虑化石样本可能是其他样本的直接祖先的可能性,即化石或现存物种或分支的祖先。化石出生-死亡(FBD)过程明确地对多样化、化石形成和采样过程进行建模,并且自然地允许有采样祖先。该模型最近被应用于基于分子数据和化石出现日期来估计分歧时间。我们将FBD模型和形态性状进化模型纳入到一种用于物种系统发育定年的贝叶斯全证据方法中。我们将这种方法应用于现存和化石企鹅,并表明现代企鹅的辐射发生时间比之前估计的要近得多,冠群中的基部分歧发生在约1270万年前,导致现存物种的大多数分支发生在过去200万年中。我们的结果表明,纳入干群化石多样性可以大大改善对冠群分类单元分歧时间的估计。该方法可在安装了SA(版本至少1.1.4)和morph-models(版本至少1.0.4)包的BEAST2(版本2.4)软件www.beast2.org中使用。