Dang Chi V
Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
Cold Spring Harb Symp Quant Biol. 2016;81:79-83. doi: 10.1101/sqb.2016.81.031153. Epub 2017 Feb 7.
The MYC oncogene is frequently deregulated in human cancers, whereas the proto-oncogene is exquisitely, tightly regulated in normal cells. Deregulated MYC drives transcriptional imbalance, thereby altering metabolism and disrupting the circadian Bmal1-Clock E-box-dependent transcriptional circuitry. Sustained oncogenic MYC expression drives a constitutive growth program with mammalian target of rapamycin (mTOR) activation that renders cells dependent on nutrients, such that glucose or glutamine deprivation could trigger cell death and key enzymes such as lactate dehydrogenase A (LDHA) and glutaminase (GLS) amenable for targeting in cancers. Further, MYC-mediated suppression of the circadian clock is surmised to suspend the inhibitory effect of Bmal1-Clock on metabolism, allowing for MYC-driven cancer cells to reach a higher state of anabolic metabolism. Hence, metabolic therapy could be deployed, particularly at specific times of the day, to diminish side effects to normal tissues while maintaining antitumor efficacy.
MYC癌基因在人类癌症中经常失调,而原癌基因在正常细胞中受到精确、严格的调控。失调的MYC会导致转录失衡,从而改变新陈代谢并破坏昼夜节律性的Bmal1-Clock E-box依赖性转录回路。持续的致癌性MYC表达驱动一个组成性生长程序,激活哺乳动物雷帕霉素靶蛋白(mTOR),使细胞依赖营养物质,以至于葡萄糖或谷氨酰胺剥夺可触发细胞死亡,并且乳酸脱氢酶A(LDHA)和谷氨酰胺酶(GLS)等关键酶适合作为癌症治疗的靶点。此外,据推测,MYC介导的昼夜节律时钟抑制会中止Bmal1-Clock对新陈代谢的抑制作用,使MYC驱动的癌细胞达到更高的合成代谢状态。因此,可以采用代谢疗法,特别是在一天中的特定时间,以减少对正常组织的副作用,同时保持抗肿瘤疗效。